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Abstract 

The creation of a lighter than air vehicle using an inner vacuum instead of a lifting 

gas is considered. Specifically, the icosahedron shape is investigated as a design that will 

enable the structure to achieve positive buoyancy while resisting collapse from the 

atmospheric pressure applied. This research analyzes the dynamic response 

characteristics of the design, and examines the accuracy of the finite element model used 

in previous research by conducting experimental testing. The techniques incorporated in 

the finite element model are confirmed based on the experimental results using a modal 

analysis. The experimental setup designed will allow future research on the interaction 

between the frame and skin of icosahedron like structures using various combinations of 

materials and construction methods. Additionally, a snapback behavior observed in 

previous static response analysis is further investigated to determine nonlinear instability 

issues with the design. Dynamic analysis of the structure reveals chaotic motion is 

present in the frame of the icosahedron under certain loads and boundary conditions. 

These findings provide information critical to the design of an icosahedron shaped lighter 

than air vehicle using an inner vacuum.  
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DYNAMIC RESPONSE ANALYSIS OF AN ICOSAHEDRON SHAPED 

LIGHTER THAN AIR VEHICLE 

 

I. Introduction 

Chapter Overview 

The creation of a lighter than air vehicle (LTAV) was an important achievement that 

allowed the human endeavor of flight to be realized. Use of such a vehicle has proven 

relevant in both civilian and military applications. However, heavier than air vehicles 

have earned more attention over the past century and become the primary vehicle used in 

the air, largely due to the technological challenges present with LTAVs. Recently, 

technological advances have sparked a new interest in the use of LTAVs. Several new 

concepts have been considered which would increase the utility of LTAVs; of particular 

interest is the development of a LTAV that generates lift by evacuating the air inside of 

the structure and creating an inner vacuum. 

There are many challenges in developing a vacuum LTAV, some of which this 

research will investigate. This chapter will describe the objectives for the research, 

highlight the motivation behind it, investigate the background leading to this point, 

briefly consider the analysis process to be used, and outline the remainder of the thesis. 

Objective 

Structures capable of withstanding atmospheric pressures with an inner vacuum have 

traditionally been designed with very thick walls to resist buckling. However, the typical 

wall thickness enabling these structures to avoid collapse also significantly increases the 

weight. Minimization of weight and maximization of structural strength are critical if the 
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structure is to achieve positive buoyancy. The design of such a structure requires a robust 

model of which the dynamic response characteristics are of particular interest.  

The objectives of this thesis are to gain a better understanding of the dynamic 

response of an icosahedron shaped LTAV, verify the current model being used, and 

identify nonlinear instability problems present in the design. Specifically, the research 

objectives are listed below:  

 Identify the inherent dynamic characteristics of the icosahedron LTAV in the 

form of natural frequencies and mode shapes.  

 Determine if a reduced order volume can be designed that is representative of 

the more complex structure as a whole.  

 Verify the computer model of the icosahedron LTAV by conducting an 

experimental modal analysis of the reduced order volume. 

 Characterize the dynamic behavior of the icosahedron LTAV when subjected 

to various loading scenarios. 

Motivation 

A LTAV in general would have numerous applications, from military surveillance to 

civilian transportation. These possibilities have already been exploited by LTAVs using a 

lifting gas (hydrogen, helium, hot air), but those vehicles require storage for the gas while 

the vehicle is not in use, and the gas is occasionally in low supply. Additionally, the use 

of a lifting gas causes a challenging vehicle control problem, which is usually solved by 

incorporating a heavy ballast system into the vehicle reducing the usable payload [1]. If a 

vehicle could be developed that required only a vacuum, many of the disadvantages to 
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existing LTAVs would be alleviated, but no current design can withstand atmospheric 

pressure and remain light enough to achieve positive buoyancy.  

In January 2014, Popular Mechanics published an article titled, “Ship of Dreams” 

that discussed a renewed interest in LTAVs. The article investigates some of the reasons 

LTAVs became largely irrelevant over the past half century after proving to be useful in 

the past. Heavy ballast systems that take away from potential payload weight are 

referenced in addition to technological advancements made by airplanes. The article also 

states some advantages LTAVs have over airplanes, including cost. It states, “Airships 

would ultimately cost about a third as much to build as a 747 and would use a third as 

much fuel” [2]. The knowledge of the cost savings potential LTAVs possess inspired the 

Defense Advanced Research Projects Agency (DARPA) to start the Walrus Hybrid Ultra 

Large Aircraft Program (HULA), which “sought to develop an airship that could cover 

12,000 nautical miles in seven days, with a payload of at least 450 tons” [2].  

The Walrus HULA program investigated the possibility of using LTAVs for 

transportation, but other uses for a vacuum LTAV can easily be envisioned. A much 

smaller version could be developed to perform search-and-rescue or surveillance 

missions. In this regard, the vacuum LTAV would be comparable to the Micro Air 

Vehicle (MAV), of which much research has been recently conducted.  

 The creation of a vacuum LTAV would have numerous military and civilian uses, 

but before any design is manufactured and tested, high fidelity computer models must be 

created to understand the challenges a vacuum LTAV presents. This thesis seeks to 

determine what types of analysis techniques are needed to be representative of a real-life 

LTAV under a vacuum, and how that structure will respond to various loading scenarios. 
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Background 

Humans have taken an interest in flight for millennia, and have been attempting to 

conquer the air dating back to the invention of the kite by the Chinese around 1000 BCE. 

These kites were even used to carry men into scout positions to identify enemy troops. 

From these early beginnings, the evolution of flight took an additional 3,000 years to 

make another significant advance. In 1783, the Montgolfier brothers successfully 

achieved flight using a hot-air balloon. While this was not the first time a LTAV had 

been imagined, it was the first time one had been successfully built and flown [3].  

Hot-air balloons are able to stay afloat in the atmosphere by displacing a volume of 

air whose weight is greater than the balloon assembly itself, creating positive buoyancy 

[1]. This concept is identical to a boat floating on water with the exception of the medium 

which the vehicle floats in. Every functional LTAV created has used some type of lifting 

gas to achieve the ability to float in air by having more buoyant lifting force than weight. 

Heating the air inside of a balloon decreases the density of the air inside and decreases 

the total weight of the balloon, while the volume stays the same and therefore the amount 

of displaced air remains the same. Another approach to creating a LTAV is by filling the 

inside of the structure with a lifting gas like hydrogen or helium, which creates the same 

effect as heated air. While this approach allows the structure to be non-rigid, and has 

proven to work, it also has significant disadvantages.  

The same idea of creating lift by displacing more weight than the structure itself 

weighs can be achieved by removing all gases inside the structure creating a vacuum. 

During the 17th century, Francesco Lana de Terzi theorized a design that did not use an 

internal pressure, but instead achieved positive buoyancy by using a vacuum [4]. His 
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design used copper spheres with a thin outer shell and a vacuum inside, but it was later 

proven no currently available homogeneous material could withstand the atmospheric 

pressure, and also be light enough to float [5]. Therefore, some type of rigid support has 

to be incorporated into the LTAV to avoid structural failure. A. Akhmeteli and A. 

Gavrilin proposed a design to create a layered shell to “achieve sufficient compressive 

strength, buckling stability, and positive buoyancy” [5]. Another possibility is to create a 

frame and skin structure where the frame resists the majority of the atmospheric pressure, 

while the skin provides stability, and prevents air leakage. An icosahedron frame is an 

intriguing choice because it has symmetry, simplicity, and is nearly spherical in shape.  

This design was considered by T. Metlen and R. Adorno-Rodriguez during previous 

research at the Air Force Institute of Technology (AFIT) [6] [7]. It consists of an 

icosahedron frame with a thin membrane-like skin covering the gaps of the frame. An 

icosahedron is made up of 20 equilateral triangles with 12 vertices where each triangle 

comes together. This design has been pursued because of its symmetry, and because it is 

nearly spherical. This allows it to displace larger amounts of fluid for its weight, and 

distribute equal loading on each member of the frame.  

Methodology 

A Finite Element Model (FEM) capable of analysis where fast, non-linear, transient 

effects dominate the solution is required to examine the instability characteristics and 

dynamic response of the proposed LTAV. Abaqus is the Finite Element Analysis (FEA) 

computer program used in analyzing the structure, because it is well suited in solving 



6 

non-linear problems of this nature. It is used to determine the modal characteristics of the 

structure and analyze its response to different dynamically applied loads. 

The proposed design is composed of an inner rigid frame and an outer membrane-like 

skin attached to the frame creating an enclosed structure nearly spherical in shape. Initial 

analysis seeks to obtain the natural frequencies and mode shapes of the structural frame 

of the LTAV. The skin is then incorporated into the model to give a better understanding 

of the interaction between the two main components, and reveal the modal response 

characteristics of the entire model. Computing the eigenvalues and eigenvectors of the 

complete structure will indicate frequencies likely to cause failure as a harmonic 

resonance occurs near the natural frequencies which leads to very large oscillations. A 

decomposition of the complex structure into its simpler parts allows the development of a 

representative structure that can be constructed and tested. In the case of both the 

standalone frame and the entire frame-skin model, an experimental test is conducted to 

verify the FEM. Finally, various loading scenarios are applied to the model to determine 

the dynamic response and instability characteristics of the structure.  

Overview 

 Chapter I: States the objective of this thesis, introduces the background and 

motivation behind it, and develops an analysis plan for completion. 

 Chapter II: Review of the theory related to the analysis of the icosahedron shaped 

LTAV. 

 Chapter III: Details the model development and methodology of the analysis and 

the FEA modeling techniques used. 
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 Chapter IV: Presents the results of the analysis for the various scenarios 

considered. 

 Chapter V: A summary of the findings and future recommendations. 
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II. Theory 

Chapter Overview 

Mechanics can be split into two categories: the first is statics, which studies all of the 

forces acting in equilibrium; and the second is dynamics, which investigates the structure 

in motion [8, p. 4].  Previous research of an icosahedron shaped LTAV by Ruben 

Adorno-Rodriguez and Trent Metlen provides a good understanding of the static response 

of the structure to atmospheric pressure, and establishes a baseline of the research 

conducted in this thesis. To better understand the total structural behavior due to various 

forces, a dynamic response of the LTAV must be examined.  

This chapter will provide a summary of the research on an icosahedron shaped LTAV 

that has been carried out to date, and details the analysis tools and theory used to obtain 

the dynamic response characteristics of the structure. FEA techniques, modal analysis, 

and chaotic behavior will be described in this section as they apply to the overall 

structure.  

Previous Research of LTAVs Subject to a Vacuum 

While the concept of using a vacuum to achieve positive buoyancy is centuries old, 

the idea of using an icosahedron frame with a membrane-like skin  as a structure is 

relatively new. Therefore, little literature has been published on the subject. Two theses 

were previously completed by AFIT students concerning an icosahedron frame structure 

which can withstand atmospheric pressure and remain light enough to float in air, and 

they provide a baseline of information for this research. The icosahedron frame concept 

originated with Trent T. Metlen’s investigation of the LTAV “to become viable methods 
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of transportation” [6, p. iv]. Metlen’s thesis research was completed in 2013 and Ruben 

Adorno-Rodriguez’s was completed in 2014. The remainder of this section is largely a 

summary of the research completed by Metlen and Adorno-Rodriguez.  

In the background section of the introduction chapter, it was stated that the optimal 

shape to achieve positive buoyancy is a sphere. The section stipulates no currently 

available commercial material formed into a thin-shell sphere can withstand the pressure 

of the atmosphere if all of the air is evacuated. A brief summary, based on Akhmeteli and 

Gavrilin’s calculations of the equations and reasoning leading to this conclusion follows. 

Spheres are symmetric, and the pressure exerted on the sphere under consideration 

acts uniformly; therefore, half of a sphere can be analyzed using the assumption that each 

half will see identical internal and external forces. A half-sphere with the static forces is 

shown in Figure 1 [5]. In the figure, σ represents the compressive stress and    represents 

the externally applied pressure acting on the sphere. 
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Figure 1: Forces Acting on Half-Sphere [5] 

The sphere has a volume shown in Equation (1) and the thin shell has a volume 

shown in Equation (2) [5]. In order for the structure to obtain positive buoyancy, the mass 

of the air displaced by the sphere must be greater than the mass of the thin shelled sphere, 

as shown in Equation (3). The masses are obtained by multiplying the volume of the 

sphere and the volume of the thin shell by their corresponding densities. Equating the 

mass of the shell to the displaced air mass will determine the required thickness of the 

shell in terms of the densities of the air and the shell material. The thickness of the shell 

that is necessary for positive buoyancy is shown in Equation (4). 

 
        

 

 
    

(1) 

 
                  (2) 
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                      (3) 

 
                  (4) 

where: 

   = buoyant force 

  = acceleration of gravity 

R = sphere radius 

       = shell thickness 

       = shell volume 

        = sphere volume 

       = shell weight 

   = density of air 

   = density of shell material 

Collapse “is a geometric phenomenon where the structure suddenly loses its capacity 

to resist the applied loading and its geometry distorts; at that point the structure becomes 

globally unstable” [7]. From classical buckling theory, a critical pressure can be 

calculated that will cause the shell to collapse, which is shown in Equation (5) [9, p. 3]. 

Finally, Equation (4) can be substituted into Equation (5) in order to relate the required 

material properties necessary to achieve positive buoyancy by evacuating the air from a 

thin shelled sphere [5]. This relationship is shown in Equation (6). 

 

      
        

 

        

 

  
 

(5) 
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(6) 

where:  

E = modulus of elasticity  

      = critical pressure that will cause collapse 

  = Poisson’s ratio 

The United States standard atmospheric air pressure at sea level is known to be 

101,325 Pascals and the density is 1.225       [10, p. 20]. Substituting these values of 

      and    into Equation (6), and using a Poisson’s ratio of 0.3, a value for    
   of 

about 500,000            is calculated. This value suggests that even a material such 

as defect free graphene, one of the least dense (               and highest modulus 

(  = 1E12 Pascals) materials known, would not be able to withstand atmospheric 

pressure without collapse, as the ratio    
   would be too small [11] [12].  

With current commercially available materials a homogenous shell could not be used 

to create a LTAV subjected to a vacuum. Metlen proposed two concepts which 

theoretically could achieve positive buoyancy under a vacuum. His two design ideas were 

an isogrid sphere and a geodesic sphere. The isogrid sphere is not of particular interest in 

this research, and will not be discussed, but the geodesic sphere is the foundation of this 

research. Figure 2 shows the icosahedron design, which is a specific version of the 

geodesic sphere under consideration [7]. Using this general shape, Metlen revealed a 

LTAV using an internal vacuum is possible with certain materials [6]. 
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Figure 2: Icosahedron Frame (on Right) with Membrane Skin (on Left) [7] 

Adorno-Rodriguez utilized Metlen’s geometric model and completed a static analysis 

revealing the optimal materials, beam size, and membrane thickness for the structure. His 

research investigated several ideas not investigated by Metlen, including what beam 

cross-sectional shape should be used for the icosahedron frame, material selection for 

both the beams and skin, the effect of incorporating the skin on the model, the effect of 

large displacements on the buoyancy of the structure, possibility of achieving positive 

buoyancy with a partial vacuum, and the effect of varying altitudes on the buoyancy of 

the structure. Adorno-Rodriguez determined the ideal cross-section of the beams that 

make up the frame, which is shown in Figure 3 [7].  
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Figure 3: Beam Cross-section for Icosahedron Frame [7] 

In his research, Adorno-Rodriguez determined an equation for selecting a material 

that will satisfy the weight-to-buoyancy ratio (W/B) necessary to achieve lift. His 

calculation accounted for the atmospheric effects, and is shown in Equation (7) [7].  

 

  

 
 

            
                         

        

              
      

        
 

 
            
            

 (7) 

 

where: 

B = buoyancy of the structure 

c = beam thickness-to-radius ratio (              ) 

      ,        = inner and outer air pressure, respectively 

R* = air specific gas constant 

r = radius of icosahedron (0.9511      ) 

               = inner and outer air temperature, respectively 
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W = structure weight 

   = volume reduction 

             = frame and skin densities, respectively 

He plotted W/B for seven different models constructed with three different 

combinations of materials. The relationships of the applied pressure to the max Von 

Mises stresses of his results are shown in Figure 4 and Figure 5 [7]. The horizontal lines 

represent lines of positive buoyancy indicating a threshold which the applied stress on the 

structure must exceed for the structure to float in air. Several vertical dashed lines are 

also shown in the plot, which represent the yield strength of the material the beams and 

skin are constructed with. 

 

Figure 4: Applied Pressure versus Max Von Mises Stress for the Frame [7] 
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Figure 5: Applied Pressure versus Max Von Mises Stress for the Skin [7] 

The research used to produce Figure 4 and Figure 5 was conducted using a static 

analysis. Both plots show the frame and the skin have significant internal stresses that 

are, for most of the models considered, above the yield strength of the material and not 

likely to withstand the applied pressure required to achieve positive buoyancy. However, 

two of the models considered (M3 and M7) are able to withstand the required applied 

pressure prior to reaching their corresponding material yield strength. This indicates, 

using certain materials, an icosahedron shaped LTAV can achieve positive buoyancy 

using an internal vacuum. The material in Figure 4 and Figure 5 that avoids collapse in 

both models is Nanocyl NC7000 Thin Multi-Wall Carbon Nanotubes [7]. While this 

finding is highly encouraging, the material is not readily produced or commercially 

manufactured, and is therefore not considered in the remainder of this research. The 
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material that is considered from Adorno-Rodriguez’s model is Beryllium. It is a currently 

available material with well known material properties, and while it isn’t likely able to 

withstand the necessary applied pressure required to achieve positive buoyancy, it is 

useful in studying to understand the structural characteristics of the design as a basis for 

future materials.  

In addition, Adorno-Rodriguez made improvements to the computer model used in 

analyzing the structure, and enhanced the accuracy of the calculations on the structure. 

He conducted a comparison between membrane and plate elements in FEA, and 

compared the results to the accepted analytical solution. He also performed a 

convergence test that verified the correct number of elements to use in the model. The 

results obtained by Adorno-Rodriguez form the baseline model used throughout this 

research, and specific details on the baseline model are stated in Chapter III.  

Finite Element Analysis and the Dynamic Response 

 “The power and usefulness of the finite element method is … in modeling and 

solving complicated parts and structures that do not have closed-form solutions” [13, pp. 

575-576]. FEA is essential in determining the dynamic response of the icosahedron 

shaped LTAV because it is a complex structure without a closed-form solution. The 

dynamic response of a structure can be obtained by using Finite Element Analysis to 

solve Equation (8) (or Equation (9) if the material is linearly elastic) shown below [14]: 

 

 
                              (8) 



18 

 
                              (9) 

where: 

C = damping matrix 

        = nodal position, velocity, and acceleration, respectively 

K = stiffness matrix 

M = mass matrix 

    
,     

 = externally applied loads and internal force vector, respectively 

 

Free vibrations of the structure are first computed by solving the undamped matrix 

equation shown in Equation (10). The solution to the matrix gives the natural frequencies 

(eigenvalues) and mode shapes (eigenvectors) of the structure used in subsequent 

calculations of the dynamic response [15]. Many simple structures have analytical 

solutions for the natural frequencies derived from the equations of motion; however, 

more complex structures require FEA to solve the eigenvalue problem shown in Equation 

(12). For example, a simply supported beam has natural frequencies shown in Equation 

(11), derived from solving the Euler-Bernoulli beam equations of motion [13]. These 

values can easily be checked against the values determined from solving the undamped 

eigenvalue problem of Equation (12). Determining the natural frequencies and mode 

shapes of a structure reveals the inherent dynamic characteristics of the system. The 

natural frequencies indicate the resonant frequency of a system, where the amplitude of 

oscillation reaches a maximum. The mode shapes indicate the patterns of deformation 

that occur when the system is oscillating at a natural frequency. Different mode shapes 
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occur for every unique natural frequency. Repeated natural frequencies have identical 

mode shapes, and usually indicate symmetry in a structure. The eigenvalues problem of 

Equation (12) shows that natural frequencies and mode shapes of an undamped system 

are based on the stiffness and mass of the structure [16].  

 
                   (10) 

 

   
           

  
 

(11) 

 
    

                  (12) 

 

where: 

A = cross-sectional area of the beam 

E = modulus of Elasticity 

I = area moment of inertia 

L = length of beam  

n = natural frequency number 

  = density 

  = natural frequency value (eigenvalues) 

   = mode shape (eigenvector) 

A solution to the dynamic response problem of Equation (9) can be determined by 

implicit direct integration or explicit direct integration. A distinction needs to be made 

about the type of problem under consideration to choose which solution technique is 
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more appropriate; specifically, whether the problem is a wave propagation type or 

structural dynamics type. The problem considered in this thesis structural dynamics 

oriented which is best suited to solve by implicit direct integration. As stated by Cook, et 

al., “Implicit direct integration is suited to structural dynamics problems [and] 

nonlinearity can be accommodated without great trouble” [14, p. 409]. The implicit direct 

integration technique will be used in the remainder of the research, and therefore the 

methodology behind explicit direct integration will not be discussed. Additional 

information on the previously mentioned methods is provided by Cook, et al. [14].  

The implicit direct integration method can increase computational time significantly, 

and requires more storage space than the explicit direct integration method. However, it 

is unconditionally stable unlike the explicit direct integration method, and therefore does 

not require a critical time step that will provide a correct solution to the problem. While a 

critical time step is not necessary for a solution, using too large of time step will reduce 

the accuracy of the solution, and therefore care must be exercised in selecting the proper 

time step. 

    can change with time in the case of nonlinearity and the dynamic response infers 

time dependence, so Equation (8) can be manipulated to Equation (13), where n indicates 

each time increment [14]. 

 

 
       

 
        

 
       

 
         (13) 
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The method of implicit direct integration calculates future response values based on 

the current and past response values. A general form of the solution is shown below in 

Equation (14) [14]: 

 

 
             

   
     

   
              

  
 
    (14) 

 

Specific forms of Equation (14) exist that can be used in calculating a response to the 

structure at each time increment. The different forms will not be revealed here, but the 

reader is encouraged to refer to Cook, et al. [14] for a detailed discussion on them. In a 

nonlinear analysis, Abaqus computer software uses an iterative scheme in solving the 

problem. According to the Abaqus documentation,  

The solution is found by specifying the loading as a function of time and 

incrementing time to obtain the nonlinear response. Therefore, Abaqus breaks the 

simulation into a number of time increments and finds the approximate equilibrium 

configuration at the end of each time increment [17].  

The user determines the type of time increment to be used, whether fixed or automatic. If 

an automatic solution is desired, Abaqus automatically adjusts the size of the time 

increments to solve the nonlinear problems efficiently based on algorithms within the 

program [17]. Alternatively, a fixed solution can be obtained by forcing the program to 

use the same time increment to solve the problem. If equilibrium cannot be achieved 

using the fixed time increment selected, an error will occur and the user is required to 

reduce the size of the time increment in order to obtain a solution. An automatic time step 

will continuously change size until a solution is determined, or the maximum number of 

iterations specified is exceeded. Therefore, an automatic time increment solution usually 
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provides a faster convergence to the solution; however, the response may not have the 

number of data points required for further analysis, and a fixed time increment approach 

may be required. 

In addition to the time response outlined above, FEA can be used to analyze the 

frequency response of a structure. This type of response analysis can be important, 

because identifies certain operating frequencies likely to cause failure of the structure. 

Frequency Response Functions and Power Spectral Density Functions 

The frequency response is an important aspect to study when determining the overall 

structural response of a system because it can reveal additional information to what can 

be extracted from the time response. Unlike the time domain response, which only 

represents the response to a single excitation frequency, the frequency domain response 

reveals information for all excitation frequencies with a periodic external force. 

Frequency response functions are the ratio of the output response of a structure due to an 

externally applied force [18, p. 1].  

The determination of the frequency response due to an arbitrary excitation requires a 

Fourier transformation. A forcing function, like the one shown on the right hand side of 

Equation (8), can be represented by a Fourier series or Fourier integral, where a function 

in the time domain can be expressed in terms of frequency. The general complex form 

relationship between time and frequency of an arbitrary excitation force is shown in 

Equation (15). Similarly, the response of the system to that excitation force can be written 

in terms of the frequency by way of a Fourier transform, as shown in Equation (16). 
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Finally, the frequency response function can be represented by the relationship shown in 

Equation (17) [19, pp. 703-705]. 

 

 
                 

 

  

 
(15) 

 
                 

 

  

 
(16) 

 
     

    

    
 

(17) 

where: 

     = forcing function applied as a function of time,   

F( ) = Fourier transform of      as a function of frequency,   

     = frequency response function 

     = system response as a function of time,   

X( ) = Fourier transform of      as a function of frequency,   

                       = complex representation of a function 

The transformation from the time domain to the frequency domain results in complex 

valued numbers, where the function in the frequency domain contains real and imaginary 

components. The real and imaginary parts of the function can be analyzed in terms of 

magnitude and phase. Magnitude is the absolute value of the complex valued number, 

and is typically plotted in decibels. Phase angle is the argument of the complex valued 

number, and is typically plotted in radians or degrees. The magnitude and phase are 

important representations for any frequency domain function, and when used in unison, 
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can provide valuable information regarding the dynamics of a system. The magnitude is 

of particular interest when it is plotted as a function of frequency. The location of the 

peaks of the magnitude plot represents the eigenvalues of the system, indicating the 

natural frequencies where the structure resonates. Plotting the peak amplitude of the 

imaginary part of the frequency response function reveals the mode shapes of the system 

at the given natural frequency [18]. 

In the case of a random variable, a similar representation of frequencies that excite 

the system the greatest can be obtained via the power spectral density (PSD) function. 

The power spectral density function displays similar information with the exception that 

only the response as a function of time is required rather than the input forcing function 

as well. In obtaining the power spectral density function, the autocorrelation function that 

relates the value of the variable at one time to the value of that variable at another time is 

used. The autocorrelation function is shown in Equation (18). The power spectral density 

function is simply the Fourier transform of the autocorrelation function, as shown in 

Equation (19). 

 

         
   

 

 
             

   

    

 
(18) 

 
             

      
 

  

 
(19) 

where: 

       = autocorrelation function as a function of time shift,   

      = power spectral density function in terms of frequency,   

  = period of signal 
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The algorithms used throughout this research for calculation of the PSD function are 

provided by MATLAB and are shown in the Appendix.   

Frequency responses deliver a wealth of information about the behavior of a structure 

under a dynamic load, and they can help characterize the behavior that is shown. 

Specifically, the frequency response can be useful in identifying what has been termed 

chaotic behavior. This is particularly useful in this thesis as previous research on an 

icosahedron LTAV has predicted a snapback behavior that is presumed to be chaotic. 

Therefore, in developing a better understanding of the structural behavior of the 

icosahedron shaped LTAV, a study of chaotic behavior is necessary. 

Chaotic Behavior 

Chaos is “the irregular and unpredictable time evolution of many nonlinear systems,” 

in which that “system does not repeat its past behavior. Yet, despite their lack of 

regularity, chaotic dynamical systems follow deterministic equations such as those 

derived from Newton’s second law” [20, p. 1]. Chaotic behavior only occurs when the 

governing equations of a system are nonlinear and the system has a time history with 

“sensitivity to initial conditions” [20, p. 1]. Several indicators show if a system displays 

chaotic behavior. An analysis of the phase-plane trajectory, power spectral density plots, 

and the calculation of Lyapunov exponents can distinguish chaotic motion from non-

chaotic motion.  

An explanation of two dynamical systems can help illustrate the difference between a 

chaotic system and a non-chaotic one. A simple pendulum with known initial conditions 

and boundary conditions has a predictable periodic time response, and changing the 
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initial conditions does not alter the nature of the response. It will still be periodic and 

predictable as shown in Figure 6. By adding another pendulum to the end of the first 

pendulum, a double pendulum is created. This system, unlike the first, exhibits wildly 

different responses to small changes in the initial conditions, and for certain initial 

conditions the motion is known to be chaotic [21]. Figure 7 shows the trajectories of the 

double pendulum for two different initial conditions. Clearly, slight changes in the initial 

conditions cause significant changes in the response of the system, indicative of chaotic 

motion. 

 

 

Figure 6: Single Pendulum System (Top) and Phase-plane Trajectory (Bottom) [22] 
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Figure 7: Double Pendulum System with Different Initial Conditions (Left) and the 

Trajectories of the Two Points Corresponding to Each System (Right) [23] 

A phase-plane history plot shows velocity versus position for some point on the 

structure over time. If the system is in static equilibrium, the phase-plane plot appears as 

a single point. If the system is dynamically stable and has a periodic motion, the phase-

plane plot has a trajectory appearing as a closed curve, known as an orbit. Considering 

the single pendulum with damping, a phase space diagram of the orbit is shown in Figure 

8 [20]. The periodically decaying motion resulting from a single pendulum eventually 

converges to a single point, known as the attractor, no matter what the initial conditions 

are. “Attractors are geometric forms that characterize long-term behavior in the state 

space…it is what the behavior of a system settles down to, or is attracted to” [22]. 

Attractors can take on various forms, with the simplest being the single point shown at 
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the origin of Figure 8. The next most complicated attractor is a closed loop, then a torus. 

These three attractors are predictable and non-chaotic; however, chaotic attractors have 

more complicated geometric forms [22]. If the system displays chaotic behavior, the 

phase-plane plot consists of “orbits whose trajectories tend to fill up a portion of the 

phase space” [24].  

 

Figure 8: Phase Space Diagram of Single Pendulum Motion Decaying to Attractor [20] 

Power spectral density plots indicate the presence of chaotic behavior as well. Alone, 

they are not a good indicator alone to characterize chaos, when used in concert with the 

other tools mentioned; they can help in distinguishing a chaotic system from a non-

chaotic one. Specifically, non-chaotic PSD plots tend to be fairly smooth with clear peaks 

at the frequencies of highest attenuation, while chaotic PSD plots tend to become more 

irregular without a discreet frequency associated with the motion [24].  

A final measure to determine if a system exhibits chaotic behavior is the calculation 

of the Lyapunov exponents. “Lyapunov exponents [have] proven to be the most useful 

dynamical diagnostic for chaotic systems. [They] are the average exponential rates of 

divergence or convergence of nearby orbits in phase space…Any system containing at 
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least one positive Lyapunov exponent is defined to be chaotic” [25, p. 285]. Wolf, et al. 

presented Equation (20) to calculate the Lyapunov exponent from experimental data [25, 

p. 295]. An attractor is reconstructed using the time series data, and the trajectories of the 

reconstructed plot are analyzed to determine if convergence or divergence occurs from 

one orbit to the next. The trajectory is traversed and the distance between neighboring 

points on the trajectory is calculated, as well as evolved length between points to 

determine convergence or divergence. If a neighboring point happens to be on a different 

trajectory passing by in a crossing fashion, a replacement point is determined to ensure 

the correct trajectory is followed. A more thorough explanation of the process can be 

found in the Determining Lyapunov Exponents from a Time Series paper by Wolf, et al. 

As Equation (20) shows, the value of the Lyapunov exponent changes with each time 

step, and the final value is the sum of all previously calculated time increments. If the 

value of the calculated Lyapunov exponent is negative or equal to zero, periodic motion 

is indicated. If the value is positive, chaotic motion is indicated and two trajectories with 

nearly identical initial conditions will diverge. Moreover, the magnitude of the Lyapunov 

exponent indicates the amount of chaos present in the system [24].  

 

   
 

     
     

 

   

  
     

        
 

(20) 

where: 

          = length between two points on the trajectory  

        = evolved length between two points at a later time 

  = total number of replacement steps 
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   = time of current replacement step 

  = initial time 

   = Lyapunov exponent 

The algorithms used to calculate the Lyapunov exponents in this research are 

provided in a MATLAB code written by Wolf, et al., and are shown in the Appendix.   

Summary 

Initial research necessary in determining the possibility of an icosahedron shaped 

LTAV has been completed by Metlen and Adorno-Rodriguez. Metlen introduced the 

concept for the geometric shape; while Adorno-Rodriguez optimized the design, and 

proved that a W/B could be achieved resulting in positive buoyancy prior to collapse of 

the structure. His model provides a baseline for the remainder of this thesis; however, 

modifications are necessary to study the dynamic response. The FEA equations used in 

calculating the natural frequencies, mode shapes, and time-dependent dynamic solution 

were presented as well as the method of implicit direct integration as it is utilized in 

computing the dynamic response of the model. Additionally, frequency response 

interpretations were introduced as a method of characterizing the behavior of the 

structure. Finally, the idea of chaos and the methods of determining its presence were 

outlined. The following chapter will reveal the model development and methodology that 

will be used in determining a dynamic response to various loading conditions. 
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III. Model Development 

Chapter Overview 

A study of the dynamic response of an icosahedron shaped LTAV requires a robust 

model. Metlen and Adorno-Rodriguez created a model capable of producing important 

information about the static response of the icosahedron shaped LTAV, as described in 

Chapter II. This chapter will detail the specific FEA methods, model development, and 

the analysis process used in analyzing the models considered in this research.  

The model developed by Adorno-Rodriguez was the baseline model used throughout 

this research, and is covered in detail in the first section. From the baseline model, natural 

frequencies and mode shapes were determined using the Abaqus modeling software. 

Next, the structure was dissected into individual components to investigate how each part 

of the model interacts to combine into the whole. The results of the original model were 

verified with an experimental setup. Additionally, an equivalent stiffness comparison of 

simpler structures was conducted in order to draw conclusions on the response 

characteristics of the icosahedron. Certain aspects must be considered when conducting a 

dynamic analysis which is not necessarily considered in a static analysis. Specifically, the 

time step value for the numerical integrator used to calculate the response is detailed in 

the final section of this chapter.  

Icosahedron Design  

The baseline icosahedron design was discussed previously in Chapter II, but the 

details of the design are reiterated here. Figure 9 depicts the icosahedron frame model 

used in Abaqus, and Figure 10 shows the frame with the skin attached. The dimensions of 
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the icosahedron, and the material properties for Beryllium, are listed in Table 1. This 

version of the model creates a weight-to-buoyancy ratio of one utilizing Equation (7). A 

W/B equal to one means the structure would float at sea-level, but not rise. Other 

versions of the model developed by Adorno-Rodriguez are capable of reaching W/B 

ratios lower than one; however, the other materials he used are not well understood, or 

even commercially available in large quantities at the current time. One goal of this 

research is to understand the dynamic structural properties of the design, and therefore 

only the model shown below is considered.  

 

 

Figure 9: Abaqus View of Baseline Icosahedron Frame 
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Figure 10: Abaqus View of Baseline Icosahedron with Skin 

Table 1: Baseline Icosahedron Dimensionality 

 Dimension Units 

Radius (center to vertex) 1.0 (0.3048) ft (m) 

Beam Cross-Section 

Radius 
5.995e-02 (1.523e-03) in (m) 

Beam Cross-Section 

Thickness 
2.998e-03 (7.614e-05) in (m) 

Beryllium Density 115.12 (1844.0) lb/ft³ (kg/m³) 

Beryllium Modulus of 

Elasticity 
6.33 (303.0) lb/ft² (GPa) 

Beryllium Poisson’s Ratio 0.18 unit less 

Skin Thickness 4.3952e-04 (1.11638e-05) in (m) 
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Adorno-Rodriguez conducted a convergence study to determine the discretization of 

the model, and determined each beam in the frame should be constructed using at least 

eight B32 beam elements [7]. B32 beams in Abaqus are Timoshenko beams that allow 

for transverse shear deformation and use a quadratic interpolation between nodes [17]. 

Similarly, he concluded that 270 M3D3 membrane elements were sufficient to discretize 

one of the triangular skins of the icosahedron. In the previous research, S3R shell 

elements were compared to the M3D3 membrane elements. For very small thicknesses, a 

minimal difference was calculated between the two in terms of displacement and stress 

[7]. This is important because S3R elements must replace M3D3 elements in this research 

to calculate the eigenvalues and mode shapes because a membrane does not possess 

initial stiffness when subjected to a force perpendicular to the membrane. The solution to 

Equation (12) is singular without a stiffness matrix, and therefore a shell element has to 

be utilized for the calculation. The difference in the shell element degrees of freedom and 

those of the membrane are shown in Figure 11. The shell elements provide stiffness in all 

degrees of freedom (DoF), while the membrane is restricted to the translational DoF [7]. 

 

Figure 11: Degrees of Freedom for Shell and Membrane Elements [7] 
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Decomposition of Icosahedron 

A method to verify the baseline model presented in the previous section was desired 

to confirm the results obtained from the computer simulations are accurate. This section 

explains the decomposition of the icosahedron into individual parts to simplify the 

structure for the process of verification. An icosahedron structure is challenging to build 

and test; however, the subcomponents it is made of are much simpler, and more easily 

constructed on which testing can be conducted. A modal analysis was used in comparing 

the characteristics of the structures under consideration. 

Natural frequencies and mode shapes of the standalone frame as well as the frame-

skin model were calculated using the Abaqus Frequency eigensolver. The frequency 

solution in Abaqus is simply a calculation of the undamped natural frequencies as 

explained in Chapter II by solving Equation (12). The first twenty modes were 

determined for each model (frame only and frame with skin) for the free boundary 

condition. A high number of modes were calculated because the icosahedron has twenty 

sides, and the natural frequencies associated with the modes seem to come in sets of 

twenty, corresponding to the number of sides.  

With the mode shapes and natural frequencies evaluated for the entire icosahedron, 

the structure was decomposed into its basic components to draw a comparison between 

the individual parts and the structure as a whole. The first component considered was a 

single triangle of the icosahedron. Next, the equilateral triangle membrane alone was 

considered without the beams supporting the edges. Finally, a single beam of the frame 

was evaluated. The decomposition from the whole structure into the individual 

components is shown in Figure 12 and Figure 13 for the standalone frame and the frame-
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skin model, respectively. The steps in the figures refer to the step of decomposition. For 

example, the first step of decomposition for the frame is to a single triangle, and the 

second step is from the single triangle to the single beam.  

 

 

Figure 12: Decomposition of Standalone Frame Model 

 

Figure 13: Decomposition of Frame-Skin Model  
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Table 2 through Table 5 show the natural frequencies calculated for the entire frame, 

and frame-skin icosahedron models, as well as the individual components the model is 

comprised of. All of the values shown in the tables are in units of Hertz. Table 2 

corresponds to the first step in Figure 12 and Table 3 corresponds to the second step 

shown in Figure 12. Similarly, Table 4 corresponds to the first step shown in Figure 13, 

while Table 5 corresponds to the second step of the icosahedron structure decomposition 

as shown in Figure 13. Step three of Figure 13 is not shown in any table because it is the 

same beam of the frame, and has equivalent eigenvalues. In each step of the 

decomposition, the natural frequencies of the component being analyzed were determined 

for three different boundary conditions: free, simply supported, and clamped at the vertex 

of the triangle or end of the beam. The three different boundary conditions were applied 

in an attempt to characterize the interaction at the vertices of the icosahedron to the 

individual triangles, and an illustration of the boundary conditions is shown in Figure 14. 

The two dimensional depiction explains the difference between a clamped boundary 

condition and a simply supported boundary condition, as they are applied to an individual 

beam. The rigid body modes that arise from the free boundary condition placed on the 

icosahedron, and occur for natural frequencies of zero, are not shown in the tables. 
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Table 2: Eigenvalues for Icosahedron Frame Decomposition – Triangle 

Mode 

# 
Frame 

Single Triangle 

of Frame – Free 

Single Triangle of 

Frame – Simply 

Supported 

Single Triangle of 

Frame – Clamped 

1 1022.02 1310.01 822.12 1857.08 

2 1022.02 1310.01 1035.65 1857.08 

3 1022.04 1344.22 1035.65 1857.08 

4 1022.04 1344.22 1052.87 1857.08 

5 1049.94 1855.95 1052.87 1857.09 

6 1049.95 1859.88 1857.09 1857.09 

7 1049.95 3841.60 3266.98 5087.01 

8 1049.97 3917.15 3266.99 5087.01 

9 1049.97 4547.76 3278.12 5087.01 

10 1096.96 4547.77 3841.60 5087.01 

11 1096.96 4550.54 4562.84 5087.03 

12 1096.97 4550.55 4562.85 5087.03 

13 1178.22 8219.36 7314.85 9890.33 

14 1178.22 8219.37 7497.42 9890.33 

15 

Rigid Body Modes Omitted 

7497.44 9890.33 

16 7988.77 9890.33 

17 7988.79 9890.37 

18 9890.34 9890.37 

19 12711.40 16181.90 

20 12711.50 16181.90 

 

 

 

Table 3: Eigenvalues for Icosahedron Frame Decomposition – Beam 

Mode 

# 
Frame 

Single Beam of 

Frame – Free 

Single Beam of Frame – 

Simply Supported 

Single Beam of 

Frame – Clamped 

1 1022.02 1863.35 822.80 1858.25 

2 1022.02 1863.35 822.80 1858.25 

3 1022.04 5116.93 3280.87 5093.55 

4 1022.04 5116.93 3280.87 5093.55 

5 1049.94 9986.21 7349.31 9923.51 

6 1049.95 9986.21 7349.31 9923.51 

7 1049.95 16439.90 13004.90 16310.70 

8 1049.97 16439.90 13004.90 16310.70 

9 1049.97 24499.90 20247.60 24273.40 
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10 1096.96 24499.90 20247.60 24273.40 

11 1096.96 26043.30 26043.30 26043.30 

12 1096.97 34243.70 29122.70 33889.60 

13 1178.22 34243.70 29122.70 33889.60 

14 1178.22 40008.40 45326.90 40008.40 

15 

Rigid Body Modes Omitted 

39739.60 45326.90 

16 39739.60 52091.70 

17 40008.40 58904.10 

18 52091.70 58904.10 

19 52284.90 75837.00 

20  75837.00 

 

 

Table 4: Eigenvalues for Icosahedron Frame and Skin Decomposition – Triangle with 

Beams and Skin 

Mode 

# 
Icosahedron 

Single Triangle of 

Icosahedron – 

Free 

Single Triangle of 

Icosahedron – 

Simply Supported 

Single Triangle of 

Icosahedron – 

Clamped 

1 18.22 14.80 13.51 13.51 

2 18.50 49.71 48.04 48.04 

3 18.89 54.91 52.67 52.68 

4 19.20 57.36 55.85 55.86 

5 19.69 134.22 133.03 133.06 

6 19.97 136.96 135.28 135.31 

7 20.02 140.61 140.14 140.18 

8 28.75 158.65 156.76 156.77 

9 29.00 176.67 174.88 174.89 

10 30.15 270.00 268.25 268.38 

11 31.30 331.61 331.50 331.56 

12 33.84 352.84 350.67 350.78 

13 34.73 391.68 389.42 389.58 

14 35.57 406.48 406.38 406.58 

15 

Rigid Body Modes Omitted 

432.49 432.77 

16 487.61 488.51 

17 499.39 499.86 

18 720.25 722.22 

19 795.36 795.79 

20 802.42 861.54 
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Table 5: Eigenvalues for Icosahedron Frame and Skin Decomposition – Triangle Skin 

Mode 

# 
Icosahedron 

Single Triangle of 

Icosahedron 

(Skin Only) – 

Free 

Single Triangle of 

Icosahedron (Skin 

Only) – Simply 

Supported 

Single Triangle of 

Icosahedron (Skin 

Only) – Clamped 

1 18.22 9.17 2.23 3.23 

2 18.50 10.63 5.84 9.26 

3 18.89 10.66 5.85 9.37 

4 19.20 24.53 15.34 21.50 

5 19.69 24.58 15.36 22.02 

6 19.97 32.93 20.89 24.49 

7 20.02 47.16 38.08 39.74 

8 28.75 52.30 38.30 46.23 

9 29.00 53.20 38.56 46.76 

10 30.15 53.76 52.74 64.83 

11 31.30 80.01 65.04 75.90 

12 33.84 80.80 65.28 76.58 

13 34.73 92.63 68.89 77.82 

14 35.57 120.58 105.22 110.87 

15 

Rigid Body Modes Omitted 

105.47 120.32 

16 106.52 121.17 

17 125.90 132.94 

18 153.19 166.94 

19 155.29 174.26 

20 156.29 175.83 

 

The decomposition of the icosahedron into its components shows a relationship 

between each of the individual parts that make up the icosahedron and the entire structure 

itself. In almost every case of decomposition, the natural calculated for the individual part 

being analyzed are not exactly the same as the entire structure, regardless of the boundary 

condition applied. However, for most of the decomposition cases, the first natural 

frequency of the entire structure typically lies between the first natural frequency of the 

individual parts for the simply supported and clamped boundary conditions. Higher order 

modes quickly diverge because the icosahedron has twenty sides, and therefore, has 

repeated eigenvalues for the first twenty modes. This relationship of the natural 
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frequencies is intuitive because the vertices of the icosahedron are not rigidly supported, 

but they do restrict the motion of the individual components more than a simply 

supported boundary condition. Therefore, the vertices of the icosahedron likely present a 

boundary condition that lies between the clamped condition and the simply supported 

condition.  To replicate the boundary condition presented by the vertices of the 

icosahedron, a modified clamped boundary condition was devised and tested.  

Experimental Test Setup 

The construction and testing of an icosahedron is a difficult challenge; however, the 

construction of its components is significantly easier. Based on the decomposition study 

of the icosahedron, a single triangle of the structure has natural frequencies that lie 

between a clamped structure and a simply supported structure at each of the vertices. In 

reality, boundary conditions often lie between a simply supported condition and a 

clamped condition as “perfect” boundary conditions are impossible to implement.  

To achieve a boundary condition stiffer than a pinned end, and softer than a clamped 

end, translational and rotational springs can be applied to the end to be more indicative of 

the true boundary condition. Figure 14 shows this application for a single beam with only 

three degrees of freedom. In the case of the experimental triangle, all six degrees of 

freedom are considered. Additionally, an elastic foundation can be applied to an entire 

surface if that surface is not rigidly tied to the surface upon which it sits, as shown in the 

bottom of Figure 14.  
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Figure 14: Illustration of Pseudo-clamped Boundary Condition and Elastic Foundation 

An experimental design had to imitate the boundary conditions of the vertices of the 

icosahedron. To produce a boundary condition that lies between the clamped condition 

and the simply supported condition, support blocks were constructed at each vertex of the 

triangle. The support blocks have a mass significantly larger than the beams of the 

triangle, and act as a pseudo-clamped boundary condition. However, the blocks are free 
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to move so the behavior of the frame is representative of the triangle that is part of the 

icosahedron structure. Figure 15 shows the Abaqus representation of the experimental 

triangle designed to replicate one of the triangles of the icosahedron.  

 

 

Figure 15: Abaqus Representation of Experimental Test Specimen without Membrane 

(Left) and with Membrane (Right) 

At the base of the support blocks, translational and rotational springs were applied as 

described in the beginning of the section to replicate the pseudo-clamped boundary 

condition, and the interaction between the test base and the blocks. In an iterative process 

of testing the triangle and modeling it in Abaqus, values for the spring stiffness’s were 

determined based on the rigid body mode natural frequencies. An elastic foundation was 

utilized in Abaqus on the bottom surface of the support blocks to act as the connection 

with the speaker upon which it was tested. The stiffness per area best representative of 

the speaker was 1.27 MPa. Additionally, rotational and translational springs were applied 

to the center node of the bottom surface to represent the correct interaction. The stiffness 
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of these springs was determined to be 6.8 KPa each. With all of the springs applied to the 

experimental triangle model, the natural frequencies and mode shapes of the rigid body 

motion matched with good accuracy as can be seen in the results of Chapter IV. As with 

the baseline icosahedron model, the beams were modeled using B32 elements, and the 

membrane was modeled using the S3R elements. Also, the block supports were modeled 

using a solid 20 node quadratic element designated C3D20R. A total of 1914 elements 

were used, with 54 elements used for the beams, 324 elements used for the skin, and 

1536 elements used for the solid blocks.  

A 3-dimensional printer was used to build the experimental triangle and the printing 

material was VeroBlue plastic. The skin material used to replicate the membrane of the 

baseline model was Kapton tape. The experimental triangle had three major differences 

from a single triangle of the previously discussed icosahedron model analyzed in Abaqus: 

dimensionality, material properties, and beam cross-section. The dimensions of the 

experimental triangle were constrained by the test setup and the capability of the 3-D 

printer. To determine the experimental triangle eigenvalues, an input force had to be 

applied to the structure, and the method chosen was a standard 6-inch speaker. The 

support blocks of the experimental triangle had to set on the lip of the speaker, and 

therefore the experimental triangle had to be smaller in dimension than the baseline 

icosahedron triangle model. Additionally, the 3-D printer could not print a hollow beam, 

such as the beam of the baseline model, without risking damage to the structure. 

Therefore, instead of a hollow beam, the experimental triangle had solid beams. Finally, 

the material used in constructing the experimental triangle was VeroBlue plastic, rather 

than the Beryllium used in the baseline FEA model. These three major differences did not 
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change the modal characteristics of the experimental model because the determining 

factor driving the natural frequencies for the structure is its basic geometric properties, 

such as long slender beams and an equilateral triangular frame, which was preserved. The 

dimensions of the experimental triangle and the material properties are listed in Table 6 

below. 

Table 6: Experimental Triangle Dimensionality 

 Dimension Units 

Block Support (Height, 

Width, and Length) 
1.1515 (0.02925) in (m) 

Beam Length 3.5335 (0.08975) in (m) 

Beam Radius 0.114 (2.9e-03) in (m) 

VeraBlue Density 0.043 (1190.0) lb/in³ (kg/m³) 

VeraBlue Modulus of 

Elasticity 
~362594.3 (~2.50) lb/in² (GPa) 

VeraBlue Poisson’s Ratio 0.35 (est.) unit less 

Kapton Thickness 0.0059 (1.5e-04) in (m) 

Kapton Density 0.0513 (1420) lb/in³ (kg/m³) 

Kapton Modulus of 

Elasticity 
362594.3 (2.5) lb/in² (GPa) 

Kapton Poisson’s Ratio 0.34 unit less 

 

 

A standard 6-inch speaker was used to apply a force on the structure, and a laser 

vibrometer was used to detect the vibration response of the structure due to the input 

force. Figure 16 displays the entire experimental setup with the test specimen placed 
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below the laser vibrometer, and the computer hardware utilized to analyze the signal to 

the left. The vibrometer hardware and software used was manufactured by Polytec. 

Specifically, the Polytec hardware models for the controller, junction box, scanning head, 

and PC were: OFV-5000, PSV-E-401, PSV-I-400, and PSV-W-401, respectively. The 

Polytec software used was version 8.8. Figure 17 shows a closer view of the frame only 

experimental triangle as well as the frame-skin experimental triangle setup. A periodic 

chirp signal was input into the speaker at ±2 Volts from 0-2000 Hertz for the frame, and 

from 0-500 Hertz for the frame-membrane. The Polytec theory manual states, 

Periodic Chirp is designed to excite all FFT (Fast Fourier Transform) lines of the 

measured spectrum. The time signal is generated out of the spectrum by an inverse 

Fourier transformation. Typically the magnitude is set for all frequencies to the same 

value. The phase is generated by an algorithm which maximizes the energy for a 

given maximum amplitude. 

After waiting for steady state conditions the excitation and the response are 

measured without leakage effects. As all frequencies of interest are excited 

simultaneously no averaging is required. This is very useful in order to do fast 

measurements. However, for precise measurements averaging can be used in order to 

increase the signal-to-noise ratio [26]. 

 

 Ten averages of displacement were taken at each point to reduce the signal-to-noise 

ratio using a sample time of 3.2 seconds for the frame, and 6.4 seconds for the frame-skin 

model in constructing the frequency response plot. 
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Figure 16: Experimental Setup 

 

 

Figure 17: Test Specimen – Frame Only (Left) and Frame-Skin (Right) 
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The process of obtaining the eigenvalues and eigenvectors of the experimental setup 

is shown in Figure 18. First, the model was created using the Solidworks Computer 

Aided Design (CAD) software and the 3-D printer. Next, the experiment was setup using 

the Polytec software, and measurement points were selected for analysis. A periodic chirp 

signal was input into the speaker, and the laser vibrometer measured the displacement of 

the selected points on the experimental triangle. The input signal to the speaker and the 

output signal from the laser vibrometer are analyzed by the software through a Fast 

Fourier Transform, and the frequency response plot was developed. Additionally, the 

eigenvectors are displayed by the Polytec software. Results of this process are shown in 

the following chapter. 

 

 

 

Figure 18: Experimental Analysis Process 
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Equivalent Stiffness Study 

In addition to decomposing the icosahedron into individual parts, a comparison was 

made to a simple beam structure using an equivalent stiffness to characterize the dynamic 

behavior of the icosahedron model. This comparison was made to identify similarities to 

structures with known dynamical behavior, similar to the decomposition of the 

icosahedron. If similarities could be identified then experiments could be carried out 

using the simplified model to obtain information on the behavior that would be present in 

the icosahedron design.  

Figure 19 depicts the process of which the comparison of a complex structure can be 

compared to a simple beam through an equivalent stiffness. Abaqus was used to impart 

an initial displacement (D) on the icosahedron structure and obtain the reaction force 

(    ). In a static analysis, force is equal to stiffness multiplied by displacement, or    

     = KD (refer to Equation (9)). With the force and displacement known, stiffness can 

be calculated. To compare the stiffness of the icosahedron to a simple beam, the known 

stiffness equation for a beam was utilized. To ensure dynamic similarities, the mass of the 

icosahedron frame and the equivalent stiffness beam had to be equal as well. Holding the 

stiffness and mass equal allows for the solution of the beam dimensions and the 

development of a beam model that can be analyzed.  
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Figure 19: Equivalent Stiffness Comparison Process 

 

The dimensions of the beam with equivalent stiffness and mass to the icosahedron 

were computed to be 0.3313 meters in length, and 0.0018 meters for the cross-sectional 

radius. Table 7 shows the natural frequencies calculated for both the simply supported, 

and the clamped boundary conditions. All values are in units of Hertz. The difference 

between some of the natural frequencies calculated for the icosahedron frame and for the 

equivalent stiffness beam is relatively small for certain modes (1.5% error between mode 

5 of the clamped frame and the clamped beam). However, the mode shapes associated 

with those eigenvalues reveal no similarity between the two structures as shown in Figure 

20. The first bending mode of the clamped icosahedron frame and the clamped beam 

have similar mode shapes, as shown in Figure 21, but the eigenvalue is off by 25.8%. The 

comparison between the icosahedron frame natural frequencies and those of the 

equivalent stiffness beam did not reveal a relationship strong enough to consider further 

diagnosis. 
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Table 7: Natural Frequencies for Equivalent Stiffness Beam 

Mode 
Icosahedron - 

Clamped 

Beam - 

Clamped 

Icosahedron - Simply 

Supported 

Beam - Simply 

Supported 

1 47.03 59.17 0.00 0.00 

2 47.03 59.17 1021.90 166.08 

3 83.94 370.68 1021.95 166.08 

4 1021.90 370.68 1021.97 664.07 

5 1021.97 1037.28 1022.09 664.07 

6 1033.62 1037.28 1049.73 1493.16 

7 1033.71 2030.85 1049.83 1493.16 

8 1048.28 2030.85 1050.07 2652.03 

9 1049.73 3353.30 1050.16 2652.03 

10 1049.83 3353.30 1053.25 4138.86 

11 1096.76 5002.23 1096.76 4138.86 

12 1096.87 5002.23 1096.86 5951.37 

13 1128.24 6295.90 1097.12 5951.37 

14 1162.04 6975.07 1177.59 8086.82 

15 1162.07 6975.07 1177.63 8086.82 

16 1178.18 9268.81 1178.18 10542.10 

17 1178.22 9268.81 1178.22 10542.10 

18 1215.03 9671.95 1178.72 12591.80 

19 1215.04 11880.00 1304.00 13313.60 

20 1232.33 11880.00 1314.99 13313.60 

 

 

The equivalent stiffness study was conducted as an alternative way to develop a 

reduced order volume that could be built and tested in lieu of the entire icosahedron. The 

decomposition of the icosahedron model into its individual parts revealed strong 

similarities between the single face of the icosahedron and the structure as a whole. 

However, the equivalent stiffness method was determined to be non representative of the 

entire icosahedron.  
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Figure 20: Mode Shape Difference for Icosahedron Frame and Equivalent Stiffness Beam 

 

 

Figure 21: Similar Mode Shapes for Icosahedron Frame and Equivalent Stiffness Beam 
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Time Step Study 

A complete dynamic analysis using FEA requires a sufficient number of elements in 

the model, the correct type of elements for the structure, and the appropriate integration 

time step size for calculating the solution. The type of elements used, and the number 

necessary to calculate an accurate solution was presented in previous sections. This 

section establishes the time step required for calculating the solution. Referring to 

Equation (14), the numeric solution to the structural analysis problem is dependent upon 

the size of the time step. If the specified time step is too large a solution may be 

indeterminable, or inaccurate.  

A common method used to select the correct time step is to obtain the displacement 

results for varying time steps, and utilize the power spectral density function to analyze 

the eigenvalues admitted from the solution. In this research, the time step variation 

analysis was executed using a single beam of the icosahedron discretized into eight B32 

beam elements. Simple supports at each end were the boundary conditions for the beam, 

and an initial displacement of ~0.6% of the length of the beam was placed at the quarter 

beam position. The initial displacement was chosen so the response would remain in the 

linear range. The nonlinear solution option was selected in Abaqus, although the same 

results would have been obtained if a linear response was requested, because of the size 

of the initial displacement. The initial displacement was removed and the free response of 

the beam as a function of time was generated using Abaqus. This simple problem allowed 

for a comparison to the analytical values of the eigenvalues found in the literature. Figure 

22 displays the simple beam setup input to Abaqus, and Table 8 shows the beam natural 

frequencies calculated analytically, and through FEA using Abaqus.  
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Figure 22: Boundary Conditions and Initial Displacement for Time Step Study 

 

Table 8: Analytical and Abaqus Calculated Natural Frequencies for Simple Beam 

Mode# Analytical Abaqus %Error 

1 824.0 822.83 0.14 

2 3296.02 3282.34 0.42 

3 7416.04 7365.15 0.69 

4 13184.08 13088.0 0.73 

5 20600.12 20541.3 0.29 

 

Table 9 shows the beam natural frequencies calculated using the PSD method. The 

accuracy of the calculated eigenvalues clearly increases as the time step decreases, with 

less than one percent error calculated for all natural frequencies using a time step of 1e-6 

seconds. Using a time step of 1e-5 seconds produces the first three eigenvalues with an 

error of less than 2.5%, although the accuracy declines at the higher number modes. The 

fifth natural frequency calculated using a time step of 1e-5 seconds has an error of 12.3%. 

Error percentages for both Table 8 and Table 9 were calculated based on the analytical 

values. Eigenvalues are not presented in Table 9 for the fourth mode because of the 

location which the displacement data was analyzed, called the reference point. The 
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reference point in this case is the quarter beam position, and the fourth mode shape has a 

node directly at that point. As Avitabile states in Experimental Modal Analysis, “the 

reference point cannot be located at the node of a mode otherwise that mode will not be 

seen in the frequency response function measurements and the mode cannot be obtained” 

[18]. 

Table 9: PSD Calculated Natural Frequencies for Simple Beam 

Mode# dt = 1e-4 s dt = 5e-5 s dt = 1e-5 s dt = 5e-6 s dt = 1e-6 s %Error 

1 801.78 823.1 822.41 822.31 822.24 0.21 

2 2516.7 3003.3 3267.4 3289.3 3288.96 0.21 

3 3608.02 5250.3 7223.8 7334.15 7355.7 0.81 

4 Undetected Undetected Undetected Undetected Undetected N/A 

5 Undetected Undetected 18048.5 19780.0 20511.6 0.43 

 

Displacement plots for the various time step values are shown in Figure 23 and Figure 

24. Table 9 showed the solutions dependence on choice of time step in the accuracy of 

the response. The displacement plots also show the importance of selecting a proper time 

step. Larger value time steps result in inaccurate data that decrease in amplitude over the 

course of the simulation. The displacement plot in Figure 24 shows that a time step of 1e-

5 seconds or less produces an almost identical response. Figure 25 and Figure 26 show 

the PSD plots as a function of decreasing time step. These plots clearly show a certain 

time step is required for an accurate solution; too large of time step leads to displacement 

plots not representative of the correct response, and the values of the natural frequencies 

obtained by the PSD plots vary by significant amounts, or do not appear at all. 

Additionally, Figure 25 shows the PSD plot is cut off before a frequency of interest (20 

kHz) because of the lack of data points.  
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Figure 23: Displacement versus Time for First Four Time Step Values 

 

Figure 24: Displacement versus Time for Last Three Time Step Values 
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Figure 25: PSD for Time Step of 1e-4 seconds 

 

Figure 26: PSD for Time Step of 1e-6 Seconds 
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Some error can be expected in running computer simulations because the Abaqus 

dynamic/implicit solver “generally introduces some degree of numerical damping” that 

could be responsible for the difference in natural frequency determined using the power 

spectral density [17]. Further decreasing the time step value would likely lead to more 

accurate results; however, a significant amount of computational power and memory is 

required to decrease the value more than 1e-6 seconds and will not be done for this 

research as a percentage error of less than one percent was considered sufficient. In most 

cases, only the first few natural frequencies and mode shapes are compared to determine 

similarities. Therefore, a time step value of 1e-5 seconds or less was used for the 

remainder of the analysis in this thesis. 

Summary 

This chapter presented the development of a dynamic model starting with the baseline 

model originally developed by Adorno-Rodriguez for a static analysis. The icosahedron 

was decomposed into its individual parts to simplify the structure, and obtain a 

representable model that could be used in experiments because the full is challenging to 

construct.  An experimental setup was detailed as an attempt to verify the accuracy of the 

solutions obtained using the Abaqus FEA program. Additionally, an equivalent stiffness 

method was discussed to simplify the complex icosahedron into a well-understood 

structure. Finally, the time step necessary for a dynamic analysis was considered to 

ensure the accuracy of the model.  
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IV. Analysis and Results 

Chapter Overview 

Modeling techniques for analyzing the icosahedron structure dynamically were 

detailed in the previous chapter as well as a method for verifying the computer model 

experimentally. This chapter will describe the results of those methods as they were 

applied, and consider the relevance of the information in terms of three basic questions:  

 Can a simplified model be created to test a representable structure in reality?  

 At what applied load and load rate do the response characteristics of the 

structure become dominated by dynamics? 

 What is the behavior of the structure when subjected to dynamical loading for 

various boundary conditions? 

The results of the experimental tests are presented along with comparisons to the 

related computer models in the first section. Next, an analysis of the loading rate is 

considered in order to impart a dynamic response. Finally, various loading scenarios are 

developed and the behavior of the response is characterized.  

Experimental Results 

Given the relationship between the icosahedron frame and the frame-skin models to 

the single triangle of the icosahedron, an experimental setup was created to test a 

representable volume in an effort to validate the FEA model that has been the basis of the 

research. The experimental setup was explained in detail in the previous chapter, and the 

results are provided in this chapter.  
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The results of decomposing the icosahedron into its individual parts and analyzing the 

natural frequencies and mode shapes of each component using various boundary 

conditions led to an experimental triangle that was explained previously. In an iterative 

process, the experimental triangle was created, tested, and the FEA model was updated to 

reflect the results of the testing. A final FEA model was developed matching the first 

several mode shapes and natural frequencies of the test specimen. Figure 27 displays the 

first six mode shapes observed in testing calculated by Abaqus. Only the relevant modes 

are displayed, related to the speaker’s vertical translation input force. 

 

 

Figure 27: Modes 1 through 6 – FEA Experimental Triangle (Frame) 
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Figure 28 shows the points of measurement for the experimental triangle setup, as 

well as the view seen from the laser vibrometer position. As the drive signal is input to 

the speaker, the vibrometer measures displacement at each point over a number of 

periods of the input signal. The software takes the average output movement of the 

triangle and creates a frequency response plot for the entire structure. The mode shapes of 

the experimental triangle are shown in Figure 29, and the frequency response plot is 

shown in Figure 30. In Figure 29, the top picture for each natural frequency is the 

movement as the triangle beams move away from the speaker, while the bottom picture is 

the movement into the speaker to show the full range of motion at a given frequency. The 

black dots in Figure 29 represent the initial point on the structure before any 

displacement, and the color of the squares represent the distance from the original 

position. Red is the greatest positive distance from the reference point, and blue is the 

greatest negative distance from the reference position. The color graduated bars in 

between the extremes mirrors the scale used by the FEA plots shown in Figure 27. 

 

Figure 28: Points of Measurement for Experimental Triangle  
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Mode #1: 29.6875 Hz Mode #2: 97.1875 Hz 

  

Mode #3: 464.0625 Hz Mode #5: 1280.938 Hz 

Figure 29: Experimental Triangle Mode Shapes and Natural Frequencies (Frame) 
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Figure 30: Frequency Response Plot for Experimental Triangle (Frame) 
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A variety of factors impacted the accuracy of the results obtained from this 

experiment, including noise and input signal parameters. Variations on the parameters did 

not have a large effect on the natural frequencies and mode shapes detected by the laser 

vibrometer, but there was some difference. Using ten averages at each point reduced the 

effect of noise; however, it cannot be eliminated. The experimental triangle and the FEA 

triangle produced very similar natural frequencies and mode shapes with the exception of 

the fifth mode shown in Figure 27. The first bending mode (491 Hz) of the frame beam 

was not detected in the experiment. A likely explanation for the lack of detection of the 

first bending mode is the difference between natural frequencies and operating deflection 

shapes arising from the experimental data. Operating deflection shapes are the mode 

shapes that are determined given all of the outlying circumstances. In a perfect 

experiment the operating deflection shapes would be the same as the true mode shapes. 

Factors such as noise, input parameters, and modal coupling can cause differences 

between the two. The first bending mode of the frame beams (mode 5 shown in Figure 

27) lies very close to the mode before it, where two beams bend in opposite direction 

while the third beam remains nearly stationary. In the experimental setup there could be 

coupling between these modes and there could be a lack of input signal necessary to 

generate the mode described as the first bending of the frame beam.  

In addition to comparing the experimental triangle with the FEA triangle, a 

reconstruction of the entire icosahedron frame was conducted to determine if the 

experimental triangle was truly representative of the whole icosahedron frame. The 

icosahedron frame was reconstructed in Abaqus using the material properties of the 3-D 

printer material and the geometric dimensions were the same as the triangle. Table 10 
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displays the related eigenvalues of each model in Hertz.  The first two rows of the table 

show the rigid body modes (RBM) that are associated with the speaker setup and 

therefore undetected on the icosahedron frame model. 

 

Table 10: Natural Frequencies of FEA Experimental Triangle Frame, Experimental 

Triangle Frame, and FEA Icosahedron Frame 

Mode 

# 

Icosahedron 

Frame 

Experimental Triangle 

Frame - Abaqus 

Experimental Triangle 

Frame - Vibrometer 

RBM 0.0 30.0418 29.6875 

RBM 0.0 97.4186 97.1875 

1 400.47 469.6590 464.0625 

2 457.21 491.3780 Undetected 

3 1260.000 1266.4200 1280.938 

 

The information contained in Figure 27, Figure 29, and Table 10 demonstrates a 

strong relationship between the FEA experimental triangle model, the real experimental 

triangle, and the icosahedron frame they were designed to replicate. Figure 31 displays 

the mode shapes of the entire icosahedron frame, and a single triangle of the frame has 

the same mode shapes as the experimental triangle models of Figure 27 and Figure 29. 

The natural frequencies of the three designs varies by at most 16% from the icosahedron 

frame to the experimental triangle for the first mode; however, this difference can be 

explained by the various factors affecting the model as detailed earlier, and more 

accuracy could be achieved with a more rigorous test setup and model construction. 

Additionally, more accurate material properties may need to be applied to the FEA model 

to achieve less error between the Abaqus results and the experimental setup.  
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Figure 31: Mode Shapes Associated with Experimental Triangle 

 

Similar to the experimental setup with the triangle frame, the same analysis was 

completed with the Kapton skin placed on the frame model. The experimental frame and 

skin model natural frequencies and mode shapes are shown in Figure 32 as computed by 

Abaqus. The points of measurement are shown along with the experimentally computed 

eigenvalues and eigenvectors in Figure 33. And the frequency response plot is shown in 

Figure 34. 
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Figure 32: Modes 1 through 8 – FEA Experimental Triangle (Frame-Skin) 
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Measurement Points – Experimental 

Triangle with Skin 
Mode #1: 36.25 Hz 

  
Mode #2: 122.03125 Hz Mode #3: 216.5625 Hz 
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Mode #4: 240.9375 Hz Mode #5: 361.5625 Hz 

  
Mode #6: 380.46875 Hz Mode #7: 472.34375 Hz 

Figure 33: Experimental Triangle Mode Shapes and Natural Frequencies (Frame-Skin) 
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Figure 34: Frequency Response Plot for Experimental Triangle (Frame-Skin) 
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Table 11 lists the natural frequencies associated with the FEA experimental triangle 

with skin, true experimental triangle, and the icosahedron with skin. Figure 35 displays 

the mode shapes of the icosahedron. As with the frame only model, the relationship 

between the experimentally calculated operating deflection shapes and those of the FEA 

models is strong. Eigenvalues detected in the experimental analysis are shown in the FEA 

triangle and the icosahedron model as well, and the mode shapes associated are 

comparable between all three. Results of the experimental analysis imply a single triangle 

of the icosahedron is representable of the entire structure, and the modeling techniques 

used are accurate.  

 

Table 11: Eigenvalues of FEA Experimental Triangle Frame, Experimental Triangle 

Frame, and FEA Icosahedron Frame 

Mode 

# 

Icosahedron  Experimental Triangle 

Frame and Skin - Abaqus 

Experimental Triangle Frame 

and Skin - Vibrometer 

RBM 0.0 29.9113 36.25 

RBM 0.0 92.4764 Undetected 

1 125.667 127.3380 122.03125 

2 252.141 246.7550 216.5625 

3 261.387 254.2790 240.9375 

4 Undetected Undetected 361.5625 

5 411.452 390.3720 380.46875 

6 478.173 423.3630 472.34375 
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Figure 35: Mode Shapes Associated with Experimental Triangle with Skin 

Chaotic Behavior Analysis 

In addition to validating the baseline model developed in previous research, a 

dynamic analysis of the icosahedron frame snapback behavior reported by Adorno-

Rodriguez is conducted to identify nonlinear instability characteristics of the design. 

Adorno-Rodriguez compares the snapback behavior to the buckling of a thin shell, where 

an instantaneous reversal of geometry occurs, but the structure retains a load-bearing 

capacity. In the previously mentioned research, the behavior was observed for two of the 

boundary conditions considered. Figure 36 shows the different boundary conditions 

considered, and the snapback behavior seen in the first and second boundary conditions 

for the static loading case. This behavior “indicates a beam withdrawal, or change in 

displacement direction, while still taking on load. Even though the slope reverses, there is 
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no softening, therefore the beam does not collapse” [7]. The results are hypothesized to 

be chaotic behavior present in the standalone frame model. To validate the theory of 

chaotic behavior in the icosahedron frame, a dynamic analysis is performed and the 

methods described in Chapter II are applied.  



74 

 

Figure 36: Snapback Behavior Observed in Unsymmetrical Boundary Conditions [7] 
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Load Rate Analysis 

One consideration necessary with a dynamic analysis, but not a static analysis, is the 

rate which a load is applied. In the case of a static analysis, the load is applied in a 

manner in which the structure is held in equilibrium and acceleration is equal to zero. A 

dynamic response will appear similar to the static response if the load is applied at a slow 

rate. Therefore, to evaluate the rate which a reasonable dynamic response could be 

produced and to define the line between dynamic and static loading, an analysis of 

ramped loads was considered.  

The snapback behavior can be seen to occur at approximately 45% of Sea Level 

pressure (~45 kPa) for what is called “Boundary Condition 1” (BC1) and “Boundary 

Condition 2” (BC2) in the plot of the applied load versus displacement of Figure 36 [7]. 

“Boundary Condition 3” (BC3) does not display the same behavior at any point up to 

100% of Sea Level pressure. Figure 37 shows BC3 and the loading applied to the 

icosahedron frame through reference points at the center of gravity of each triangle, as 

well as the midpoint node on the lower beam where all displacement data is collected. 

The midpoint node was used because the icosahedron deforms symmetrically, and all 

midpoint nodes on all beams have equivalent displacement. Also, it is the reference point 

referred to in previous research, and has the greatest displacement of any node on the 

structure. The concentrated load applied to the reference points was distributed to the 

beams using a coupling constraint in Abaqus. The coupling constraint allows the beams 

to experience an equivalent load to one that would be applied if a triangular skin with an 

applied pressure was tied along the edges. Adorno-Rodriguez conducted a study to ensure 
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the applied load experienced by the beams was identical using the reference point and 

coupling constraint method, or using a skin tied to the beams [7]. 

 

Figure 37: Boundary Condition and Load Applied for Load Study 

Figure 37 shows the top and bottom nodes are restricted in the x and y direction, 

while all other degrees of freedom are free to move. The simple difference between BC3 

and BC2 is all degrees of freedom are constrained at the bottom node in BC2 instead of 

only the x and y directions. BC1 has all degrees of freedom restricted at the bottom node, 

but none restricted at the top. BC3 was found to respond to the statically applied pressure 

in a symmetric behavior, while the other two boundary conditions produced 

nonsymmetrical behavior that led to a sudden change in slope of the applied pressure 
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versus displacement plots shown in Figure 36. The load which an instantaneous change in 

displacement direction occurs is referred to as the snapping load. When the load was 

applied dynamically, BC3 did not continue to respond in a symmetric fashion, but instead 

began spinning about the z-axis when the baseline icosahedron model was used. To 

achieve dynamic symmetry, the load at the reference point was changed to a follower 

force to replicate a pressure being applied, and eliminate the spinning motion. A follower 

force remains normal to the tangent plane of the surface where the load is applied on the 

structure. Figure 38 displays a simple example of a follower force applied to a cantilever 

beam. By definition, pressure is a follower force.   

 

Figure 38: Follower Force (Left) and Non-follower Force (Right) [7] 

The study of chaotic behavior in a system requires a dynamic response dependent on 

the initial conditions applied to that system. Previously, boundary conditions and 

symmetry were considered. Now, the effect of the rate of loading on the structure is 

considered. Various loading scenarios applied to the frame are shown in Figure 39. Each 

applied load is in the form of a ramp input, which can be written as r(t) = t*u(t), where 
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u(t) is the step input function. The step input function is equal to unity for time greater 

than zero and zero for time less than zero [19]. The displacement response, also known as 

the ramp response, to the ramp input function is shown in Figure 40.  

 

 

Figure 39: Various Loading Conditions for Load Study 

 

Figure 40: Displacement versus Time Curves for Various Loading Conditions 
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As the rate of loading is increased, the difference between the static response and the 

dynamic response is shown with more oscillations occurring once the full load is applied. 

A rise time of 0.005 seconds, corresponding to a load rate of 4.053 MPa- ˉ¹, sufficiently 

displayed the dynamic characteristics of interest in this research. A rate of at least that 

value is used for the remainder of this thesis in studying chaotic behavior.  

Chaotic behavior is dependent on the initial conditions applied to a system, and the 

rates which loads are applied effectively change the initial velocity of the icosahedron 

frame, which changes the initial conditions. The initial slopes of the displacement curves 

in Figure 40 are the initial velocities, and increasing the initial velocity increases the 

oscillations that occur once the full load is applied. This makes sense as the increase in 

velocity is directly correlated to an increase in kinetic energy in the system. When the 

amount of energy applied to the system is too great for the structure to absorb, a 

snapback behavior occurs. However, if too little energy is applied to the system (too 

small of initial velocity), the response appears to be the same as the static response and 

chaos cannot be examined. The time step used in evaluating the varying loading scenarios 

was set to automatic, rather than fixed, for reasons stated in the previous time step study 

discussed in Chapter III. Applying the automatic time step in Abaqus allows the program 

to select an appropriate time step for that iteration, and it allows the program to change 

the time step over the course of solving the problem. The reason for this is a detailed 

response was not desired, only a definite point where the response changes from 

exhibiting static characteristics to dynamic characteristics, enabling a chaotic motion 

analysis.  



80 

The snapback behavior presented by Adorno-Rodriguez occurred in the first two 

boundary conditions that were deemed unsymmetrical. However, the snapping behavior 

developed for all boundary conditions, including BC3, when the load was applied 

dynamically. Additionally, the load that caused the snapback behavior to occur decreased 

when the load was applied dynamically instead of statically, and the value to which it 

decreased was dependent on the initial conditions (load rate). The ramp input load 

scenarios applied to the frame above the snapping load are shown in Figure 41, and the 

displacement versus time ramp response to those loads is shown in Figure 42. 

 

 

Figure 41: Loads above Snapping Load 
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Figure 42: Displacement versus Time Curves above Snapping Load 

 

The results of the load rate analysis shows the importance of what load is applied, and 

at what rate it is applied. These initial conditions drive the dynamics of the system, and 

for certain scenarios, lead to chaotic behavior. Clearly, Figure 40 shows the difference 

between a slowly applied load and a quickly applied load. The structure exhibits greater 

oscillatory behavior as the time over which the load is applied decreases. Also, Figure 42 

displays what happens to the structure when the applied load is too large, regardless of 

the time over which the load is applied. These results are utilized in studying the chaotic 

behavior associated with the frame when an unsymmetrical boundary condition is 

applied, or the applied load is too great. Table 12 displays the various loading scenarios 

considered, and the boundary conditions of the frame to which they were applied. The 

last two load scenarios incorporated the skin with the frame to observe the effect it has on 

the instability characteristics of the model. 
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Table 12: Loading Rates for Applied Pressure 

Load 

# 

% of Sea Level 

Pressure Applied 
Ramp Duration (s) 

Load Rate 

(MPa-sˉ¹) 

Boundary 

Condition 

1 10 0.002 5.0663 BC3 (Frame) 

2 20 0.005 4.053 BC3 (Frame) 

3 40* 0.005 8.106 BC3 (Frame) 

4 10 0.002 5.0663 BC2 (Frame) 

5 20 0.005 4.053 BC2 (Frame) 

6 40* 0.005 8.106 BC2 (Frame) 

7 40 0.005 8.106 BC3 (Frame-skin) 

8 60 0.005 12.159 BC3 (Frame-skin) 

*Above dynamic snapping load for frame determined for the applied load rate 

  

Icosahedron Frame Boundary Condition Three 

In a static analysis, BC3 did not display the snapback behavior present in both BC1 

and BC2. This section investigates the effect of dynamic loading on the structure using 

the same boundary condition. From Table 12, three dynamic loads are considered in 

determining if chaotic motion is present in the design. The first two loads are below the 

snapping load, while the third load is above. 

 For each load number, four plots were generated to determine if chaotic behavior 

exists. The first plot is the displacement versus time response for the given load. The 

second plot is the phase plane trajectory, displaying velocity versus displacement. The 

third plot is the power spectral density plot for the given load, and the fourth plot shows 

the convergence of the Lyapunov exponent calculated by Equation (20). Lyapunov 

exponent convergence plots were developed using MATLAB code provided by Wolf, et 

al., and the methods described in Determining Lyapunov Exponents from a Time Series 

article [25]. The MATLAB code is in the Appendix for reference.  
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The method developed by Wolf, et al. creates a delay reconstruction of the attractor 

described in Chapter II. It then cycles through the delay reconstructed data and calculates 

an estimate for the Lyapunov exponent at each evolution of the data. Delay 

reconstructions of the attractor were made using the delay parameter τ, which was varied 

in order to avoid producing a crossing or folding of the trajectories within the attractor. 

Crossing or folding of trajectories can lead to a false positive Lyapunov exponent. The 

algorithm cycles through the trajectory based on a number of input parameter values to 

calculate the Lyapunov exponent, as explained by Wolf, et al. [25].  

Figure 43 through Figure 55 show the result of load numbers 1 through 3 as they were 

applied to the icosahedron frame with BC3.  The results for load number 1 are displayed 

in Figure 43 through Figure 46. The applied load is well below the static and dynamic 

snapping load. As the plots show, the load does not cause a snapback behavior, and 

reaches a steady state oscillation which is purely periodic. There is no damping applied to 

the model, so the phase plane trajectory remains on a single orbit, rather than decreasing 

in size over time. The PSD plot shows the frequency response, and shows a dominant 

natural frequency at 1500 Hertz. This value is different than the Abaqus calculated value 

shown in Table 2 which lists the first natural frequency occurring around 1022 Hertz. 

However, this difference can be attributed to the addition of the load on the structure, and 

the change in boundary conditions. Finally, the convergence of the Lyapunov exponent to 

a negative number in Figure 46 indicates the response of the icosahedron frame for load 

number 1 is non-chaotic.  
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Figure 43: Load 1, BC3,   = -0.0121 bits/orbit, Displacement Curve 

 

 

Figure 44: Load 1, BC3,   = -0.0121 bits/orbit, Phase Plane Trajectory 
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Figure 45: Load 1, BC3,   = -0.0121 bits/orbit, PSD 

 

Figure 46: Load 1, BC3,   = -0.0121 bits/orbit, Lyapunov Exponent Convergence Plot 
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For load number 1, the Lyapunov exponent was calculated using 4500 data points 

spaced at 1e-5 second intervals. The initial 0.002 seconds of data corresponding to the 

ramped load is omitted from the calculation, as the transient response data is not desired. 

The following parameters were used in the MATLAB algorithm (see Wolf, et al.): tau = 

8, evolve = 8, dismin = 1e-8 and dismax = 2e-4. Figure 47 shows an example of the 

reconstructed attractor for load number 1. As expected, for a purely periodic response, 

the attractor is simply a closed curve. The attractor is reconstructed in three dimensions 

because the system is three-dimensional, and the plot is made of ordered triples 

comprised of the displacement data separated by the delay parameter, τ. For example, one 

point has coordinates of [u1(t), u1(t+τ), u1(t+2τ)]. The dismax parameter was selected 

based on the longest distance between points in the reconstructed attractor plot, and 

dismin was set to be smaller than the shortest distance between points. The tau and evolve 

parameters are chosen heuristically so the attractor does not appear to fold on itself 

which can lead to a false positive Lyapunov exponent calculation.  
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Figure 47: Delay Reconstructed Attractor for Load 1, BC3,   = -0.0121 bits/orbit 

 

Load number 2 leads to the same conclusion as load number 1. The displacement 

curve, phase plane trajectory, PSD plot, and Lyapunov convergence are nearly identical 

to those of load number 1. Again, there is a periodic steady state oscillation present after 

the load is applied resulting in a fixed orbit shown in the phase plane trajectory. The PSD 

is smooth and has a clearly identifiable natural frequency, while the Lyapunov exponent 

converges to a negative value. The input parameters for the Lyapunov exponent 

calculations were the same as those used in load number 1. All of the information 

presented indicates non-chaotic behavior. 
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Figure 48: Load 2, BC3,   = -0.0137 bits/orbit, Displacement Curve 

 

Figure 49: Load 2, BC3,   = -0.0137 bits/orbit, Phase Plane Trajectory 
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Figure 50: Load 2, BC3,   = -0.0137 bits/orbit, PSD 

 

Figure 51: Load 2, BC3,   = -0.0137 bits/orbit, Lyapunov Exponent Convergence Plot 
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Load number 3 is applied above the snapping load pressure, and presents extremely 

different results, both quantitatively and qualitatively. The displacement curve is no 

longer purely periodic, but instead seems to vibrate disorderly, and it has amplitude 

approximately 100 times that of load number 2. The snapback behavior can be seen as 

the displacement instantaneously changing direction. Furthermore, the phase plane 

trajectory has no apparent repeated pattern, but does generally remain within an elliptical 

envelope. The orbits of the trajectory appear to fill up a portion of the phase space, 

indicating chaotic behavior as stated in Chapter II. The frequency response has changed 

character from load number 1 and 2, becoming noisy, and not clearly showing a peak 

frequency. Finally, the convergence of the Lyapunov exponent is well above zero 

bits/orbit, indicating significantly chaotic behavior occurring above the dynamically 

applied snapping load. The bits/orbit unit is carried over from Wolf’s information theory 

terms, where bits references amount of information. Specifically, “the exponents measure 

the rate at which system processes create or destroy information… Hence if an initial 

point were specified with an accuracy of one part per million (20 bits), the future 

behavior could not be predicted after about” 0.0018 seconds, corresponding to less than 

one quarter of a single orbit. “After this time the small uncertainty will essentially cover 

the entire attractor, reflecting 20 bits of new information that can be gained from an 

additional measurement of the system” [25]. In short, load number 3 displays chaotic 

behavior such that after only a quarter of a single orbit predictability is lost. 

Values of the input parameters to the algorithm for load number 3 were tau = 80, 

evolve = 80, dismin = 1e-8 and dismax = 2e-2. The change is largely attributed to the 

change in amplitude in the displacement curve, as well the decrease in time step used in 
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obtaining the solution. As discussed in Chapter III, the time step had to be decreased to 

1e-6 seconds for Abaqus to converge on a solution to the problem, instead of the value of 

1e-5 seconds used in the simpler problems using load number 1 and 2.  

 

 

Figure 52: Load 3, BC3,   = 3.8814 bits/orbit, Displacement Curve 

 

Figure 53: Load 3, BC3,   = 3.8814 bits/orbit, Phase Plane Trajectory 
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Figure 54: Load 3, BC3,   = 3.8814 bits/orbit, PSD 

 

Figure 55: Load 3, BC3,   = 3.8814 bits/orbit, Lyapunov Exponent Convergence Plot 
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Icosahedron Frame Boundary Condition Two 

The same loads applied to BC3 were applied to BC2 to confirm the snapback 

behavior originally presented in the static analysis. Figure 56 through Figure 59 show the 

results of load number 4, Figure 60 through Figure 63 show the results for load number 5, 

and Figure 64 through Figure 67 are from load number 6.  

Load 4 and 5 create responses similar in each of the plots analyzed. Figure 56 and 

Figure 60 reveal the most periodic displacement curves with small disturbances occurring 

throughout the response. The displacement curve of load number 5 grows more erratic, 

and the number of non-periodic disturbances increases as the applied load increases. The 

phase plane trajectories of the two responses are also similar, settling into an elliptical 

orbit of varying size. These variations in the orbit size correspond to the disturbances 

shown in the displacement plots. As the force increases in load number 5, the 

disturbances become larger and more numerous, which gives rise to larger variations in 

the orbits of the phase plane trajectory. The PSD plot of the two loads looks similar, with 

peak frequencies at 1556 Hz and 1200 Hz, respectively. However, the increased pressure 

of load number 5 is responsible for more peaks being present than in the PSD plot of load 

number 4. The Lyapunov exponent convergence plot shown in Figure 59 and Figure 63 

share the same characteristics, with the final convergence settling at a slightly positive 

number. Returning to the example given in the previous section on the interpretation of 

the final value for the Lyapunov exponent, predictability is lost after 65.9 orbits, and 

53.95 orbits for load numbers 4 and 5, respectively (assuming 20 bits of “good” data 

initially). The input parameters for the Lyapunov exponent code were the same for load 
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number 4 and load number 5; specifically, they were tau = 15, evolve = 10, dismin = 1e-

8 and dismax = 2e-4. 

All of the response plots from load number 4 and load number 5 indicate that BC2 

presents a slightly chaotic behavior, decreasing in predictability as the load rate is 

increased. While the snapback behavior associated with the unsymmetrical boundary 

condition is not identified by applying load number 4 or 5, the structure seems to respond 

in a chaotic fashion below the dynamically applied snapping load. This indicates small 

changes in the initial conditions cause significant changes in the response of the structure 

under BC2.  

 

 

Figure 56: Load 4, BC2,   = 0.303 bits/orbit, Displacement Curve 
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Figure 57: Load 4, BC2,   = 0.303 bits/orbit, Phase Plane Trajectory 

 

Figure 58: Load 4, BC2,   = 0.303 bits/orbit, PSD 
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Figure 59: Load 4, BC2,   = 0.303 bits/orbit, Lyapunov Exponent Convergence Plot 

 

 

Figure 60: Load 5, BC2,   = 0.371 bits/orbit, Displacement Curve 
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Figure 61: Load 5, BC2,   = 0.371 bits/orbit, Phase Plane Trajectory 

 

Figure 62: Load 5, BC2,   = 0.371 bits/orbit, PSD 
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Figure 63: Load 5, BC2,   = 0.371 bits/orbit, Lyapunov Exponent Convergence Plot 

 

Load number 6 is applied to BC2 just as load number 3 was applied to BC3. The 

dynamically applied load is above the pressure required to create the snapback behavior 

for the symmetrical BC3, therefore, it is expected to produce similar, if not more chaotic 

results for BC2. Figure 64 through Figure 67 shows the results of the loading scenario, 

and show the response is more chaotic than the response to load number 3 applied to 

BC3. Specifically, the Lyapunov exponent converges to a significantly higher value for 

load number 6, corresponding to lost predictability after a single orbit. The input 

parameters for the Lyapunov exponent code were: tau = 150, evolve = 80, dismin = 1e-8 

and dismax = 2e-2. 
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Figure 64: Load 6, BC2,   = 19.67 bits/orbit, Displacement Curve 

 

 

Figure 65: Load 6, BC2,   = 19.67 bits/orbit, Phase Plane Trajectory 
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Figure 66: Load 6, BC2,   = 19.67 bits/orbit, PSD 

 

Figure 67: Load 6, BC2,   = 19.67 bits/orbit, Lyapunov Exponent Convergence Plot 
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Icosahedron Frame and Skin Boundary Condition Three 

Previous research indicated the frame itself exhibited a snapback behavior. The same 

behavior was not predicted to occur when the skin was placed on the frame to create the 

full icosahedron LTAV design. However, with the knowledge a dynamic snapping load is 

observed below the static load, and the snapback behavior is present in the frame for the 

symmetric BC3 when subject to the dynamic load, the dynamic load above the snapping 

load was applied to the entire icosahedron model to determine if the snapback occurred.  

Figure 68 through Figure 71 represent the response of the full icosahedron LTAV 

design to load number 7, which caused the snapback behavior to occur in the frame. 

Additionally, Figure 72 through Figure 75 show the response to load number 8, which 

reaches 60% SL pressure. Interestingly, both loading scenarios result in very similar 

responses which are somewhat different from the responses seen in the frame alone. The 

displacement curves shown in Figure 68 and Figure 72 show highly periodic behavior, 

even as the load rises to its steady state level. The phase plane trajectories of the loads 

also achieve a common orbit at steady state. The size of the orbit varies, but it is unlike 

the variations seen in load number 4 and 5, where the size and center of the orbit seem to 

change sporadically. Instead, the orbits change size in a predictable fashion, and the 

center of the elliptical orbit remains nearly constant. The decrease in orbit size implies 

the membrane applied to the icosahedron frame introduces system level damping, and if 

the solution was carried out further, the reconstructed attractor would likely decay to a 

single point. The reconstructed attractor for load number 7 is shown in Figure 76, and it 

can be seen that a torus shaped attractor is reconstructed.  
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The PSD of the two loading scenarios is fairly smooth with clearly established peaks. 

Finally, the Lyapunov exponent calculated is negative for both loading cases applied to 

the icosahedron frame and skin model. All of the indicators utilized establish the full 

icosahedron LTAV design behaves non-chaotically when the sudden vacuum is applied. 

The input parameters for the Lyapunov exponent code were the same for load number 7 

and load number 8, except tau; specifically, they were: tau = 15 (8 for load 8) , evolve = 

8, dismin = 1e-8 and dismax = 2e-3. 

 

 

Figure 68: Load 7, BC3,   = -0.00291 bits/orbit, Displacement Curve 
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Figure 69: Load 7, BC3,   = -0.00291 bits/orbit, Phase Plane Trajectory 

 

Figure 70: Load 7, BC3,   = -0.00291 bits/orbit, PSD 
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Figure 71: Load 7, BC3,   = -0.00291 bits/orbit, Lyapunov Exponent Convergence Plot 

 

Figure 72: Load 8, BC3,   = -0.0119 bits/orbit, Displacement Curve 
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Figure 73: Load 8, BC3,   = -0.0119 bits/orbit, Phase Plane Trajectory 

 

Figure 74: Load 8, BC3,   = -0.0119 bits/orbit, PSD 
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Figure 75: Load 8, BC3,   = -0.0119 bits/orbit, Lyapunov Exponent Convergence Plot 

 

Figure 76: Delay Reconstructed Attractor for Load 7, BC3,   = -0.00291 bits/orbit 
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The results of the Lyapunov exponent calculations are displayed in Table 13. Positive 

value Lyapunov exponents indicate chaotic dynamics associated with the snapback 

behavior exhibited by the frame during loading scenarios above the snapping load, or 

resulting from applying BC2, and are highlighted in bold italic font. Higher positive 

values correspond to higher levels of chaotic motion.   

 

Table 13: Lyapunov Exponent for Different Applied Loads 

Load Number 

% of Sea Level 

Pressure 

Applied 

             

(bits/s) 

Dominant 

Orbital Period 

(s) 

      

(bits/orbit) 

1 10 -18.08 6.67e-04 -0.0121 

2 20 -16.39 8.33e-04 -0.0137 

3 40* 10953.2 3.54e-04 3.8814 

4 10 471.72 6.43e-04 0.303 

5 20 444.84 8.33e-04 0.371 

6 40* 10051.5 1.96e-03 19.67 

7 40 -8.269 3.52e-04 -0.00291 

8 60 -31.16 3.81e-04 -0.0119 

*Above dynamic snapping load for frame determined for the applied load rate 

 

Summary 

An experimental verification of the FEA model was conducted by testing a 

representable portion of the icosahedron LTAV. The results confirmed the modeling 

techniques used in Abaqus, and established a segment of the model can be used to 

determine how the entire structure behaves. A loading rate analysis developed the types 

of loads that were necessary to produce significant dynamic effects. Also, a snapping 

load was considered for all of the boundary conditions presented in previous research, 
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beyond which the response of the icosahedron frame becomes erratic and unpredictable. 

The different methods for determining if chaotic behavior is present in the structure were 

applied to characterize the response and investigate the snapback phenomenon exhibited 

under certain circumstances.  
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V.  Conclusions and Recommendations 

Chapter Overview 

The previous chapters in this document have discussed the background, theory, and 

motivation of LTAVs; developed the techniques necessary to accurately model the 

icosahedron design; and presented the results of the experiments conducted and 

simulations run in a dynamic analysis of the structure. This chapter intends to report the 

important developments that transpired during the research, and the relevance it has in the 

creation of an icosahedron LTAV. 

Conclusions of Research 

 Decomposition of the FEA icosahedron structure into individual parts indicates 

under the properly applied boundary conditions, a single triangle of the complex 

structure can match the natural frequencies and modes shapes of the entire model. 

This finding can help cut simulation run times significantly when studying the 

dynamics of the icosahedron LTAV. 

 An equivalent stiffness method was developed to compare the icosahedron frame 

to simple beam with equal mass. The natural frequencies calculated for the two 

structures revealed some similarities; however, the mode shapes were not readily 

comparable, and the method proved to be non-practical. 

 A fixed time step of at least 1e-5 seconds is required to study the dynamic 

response of the icosahedron structure and obtain accurate results. Also, the 

implicit direct integration method was determined to be the best solution 

technique for the dynamic problems presented. 
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 A dynamic response of the icosahedron shaped LTAV requires a dynamically 

applied load, and is highly dependent on the initial conditions. The magnitude of 

the load and the rate at which the load is applied was critical in characterizing the 

response of the structure. Specifically, a pressure of ~35% of Sea Level applied at 

a rate of 4.053 MPa- ˉ¹ was found to cause a dynamic snapping load for all 

boundary conditions. This snapping load occurred at ~45% of Sea Level pressure 

for the statically applied load, and only occurred for BC1 and BC2. 

 The snapback displacement seen in the frame was determined to be chaotic 

behavior confirmed by the Lyapunov exponent calculation and a series of plots 

shown in Chapter IV. This behavior occurred in BC2 regardless of the load or 

load rate, indicating significant differences in the response with small changes in 

initial conditions. The chaotic behavior was present in BC3, but only when the 

load applied was above the dynamic snapping load. 

 No chaotic behavior was determined in the frame with skin model. This indicates 

the membrane increases the strength of the design significantly and it eliminates 

the instability present with only the frame. Furthermore, the membrane added 

some measure of damping to the structure which was indicated in the response 

plots of Chapter IV.  

 An experimental triangle was designed, built, and tested that is representative of 

the icosahedron for both the frame and the frame-skin configurations. The 

experimental triangle verified the FEA model, and this test will be instrumental in 

future construction considerations of an icosahedron shaped LTAV. 
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 Natural Frequencies and mode shapes of the icosahedron shaped LTAV are 

driven by geometry and boundary conditions, rather than materials and beam 

cross-section. 

Significance of Research 

The nonlinear dynamic response related to a complex structure has been evaluated 

and the computer FEA model used in researching the structure has been verified. An 

experimental test setup was developed which will allow future design considerations to 

be tested. Such considerations include the use of composite materials, metals, and 

plastics, and the method used in tying the frame to the skin. The dynamic behavior 

exhibited by the icosahedron frame was characterized as chaotic for certain loads and 

boundary conditions. This development will help establish an operating envelope future 

vacuum icosahedron LTAVs will have to remain within to prevent collapse.  

Recommendations for Future Research 

 The experimental triangle analysis was conducted using only one laser vibrometer 

set up to calculate displacement perpendicular to the plane of the triangle. The use 

of three laser vibrometers setup to detect displacement in three dimensions would 

provide more accurate results, and a better correlation to mode shapes could be 

established. Also, the number of measurement points used in the experimental 

setup could be increased to better determine higher mode shapes which were 

undetectable with the number of points used in this research. Finally, the signal 

input parameters used to calculate the frequency response plots of the 
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experimental triangle could be better optimized to eliminate any coupling of 

modes.  

 The icosahedron model under consideration did not have any damping associated 

with it. Adding the membrane to the frame involuntarily incorporates a level of 

damping to the model, but the addition of a correct damping coefficient for the 

material under consideration will result in a more accurate response prediction.  

 Parameters for the Lyapunov exponent code were selected in a somewhat trial-

and-error approach. A parameter study for the Lyapunov exponent calculation 

would lead to a more accurate final value of the Lyapunov exponent, and 

therefore give more confidence in the level of chaos present in the system.  

 The only loads applied to the structure were sudden pressure loads expected to be 

applied by evacuating the air out of the structure. However, numerous other 

loading scenarios will be presented in actual operations of the LTAVs, such as 

aerodynamics, motor rotational unbalance, and impact with other structures. A 

dynamic analysis of these loads would develop an understanding of the operating 

constraints required for the vehicle.  
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Appendix 

This is the Lyapunov exponent calculation code from which all of the exponent 

convergence plots were created and Table 13 data was developed. The first script, 

lyapunov.m, sends Abaqus dynamic response displacement data to basegen.m, fet.m, and 

search.m. From the data calculated through those functions, makeplot.m and 

Lyapunov_expEst.m are called to produce the final plots desired. These scripts and 

functions were originally created by Wolf, et al. and modified for the icosahedron 

analysis with the exception of Lyapunov_expEst.m [25]. Additionally, the PSD plot 

generating code, PSD.m, is provided at the end of the Lyapunov code. 

 

lyapunov.m 

 
clc; clear all; close all; format compact; 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Matlab version of the algorithm by Wolf et al. for estimating the  
% dominant Lyapunov exponent from a 1-D time series. 
% 
% Physica 16D (1985) 285-317 "Determining Lyapunov Exponents  
% from a Time Series" 
% Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano 
%  
% Appendix B of the Physica D article contains Fortran code for a  
% concise, but highly inefficient version of the algorithm. I have 
% been distributing a Fortran and C version of the efficient version  
% of the algorithm since the 1980's. The efficient version of the  
% code was converted to Matlab by Taehyeun Park, The Cooper Union,  
% EE'15 in September, 2014. 
% 
% Detailed instructions for the use of this code will be posted at  
% Matlab Central's File Exchange. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% After reporting out xy (displacement/velocity) data from ABAQUS,  
% need to save the data of interest as a single column and save as  
% a text file to send into basegen 
fid = uigetfile('.txt'); 
% Enter which load case to run calculation for 
load_case = str2num(fid(end-5)); 
rawdata = importdata(fid,' '); 
% Cut off the transient response data 
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[m,~] = size(rawdata); 
time = rawdata(round(0.1*m)+2:end,1);  
disp = rawdata(round(0.1*m)+2:end,2);  

  
% input the dominant frequency as calculated using PSD 
domFreqs = [1500 1200 2822 1556 1200 511.1 2844 2622]; 
domFreq = domFreqs(load_case); %Changes for load case 
save Disp_Data.txt disp -ASCII 
fname = 'Disp_Data.txt'; 

  
datcnt = length(disp); 
taus = [8 8 80 15 15 150 15 8]; 
tau = taus(load_case); %Changes for load case 
ndim = 3;  
ires = 10; 
maxbox = 6000; 

  
db = basgen(fname, tau, ndim, ires, datcnt, maxbox); 

  
dt = time(2)-time(1); 
evolves = [8 8 80 10 10 80 8 8]; 
evolve = evolves(load_case); %Changes for load case 
dismin = 0.00000001; 
dismaxs = [0.0002 0.0002 0.02 0.0002 0.0002 0.02 0.002 0.002]; 
dismax = dismaxs(load_case); %Changes for load case 
thmax = 30; 

  
[out, SUM] = fet(db, dt, evolve, dismin, dismax, thmax); 

  
makeplot(db, out, evolve, 'NorthWest') 

  
[exp_bps,exp_bpo] = lyapunov_expEst(domFreq) 
 

 

basegen.m 
 

function db = basgen(fname, tau, ndim, ires, datcnt, maxbox) 
% Database generator for fet.m function 
% Taehyeun Park, The Cooper Union, EE'15 

  
x = fileread(fname); 
data = zeros(1,datcnt); 
trck = 1; 
start = 1; 
fin = 0; 

  
for ii = 1:length(x) 
    if strcmp(x(ii), char(32)) || strcmp(x(ii), char(13)) || 

strcmp(x(ii), char(10)) || strcmp(x(ii), char(26)) 
        if fin >= start 
            data(trck) = str2num(x(start:fin)); 
            trck = trck + 1; 
            if trck > 8*floor(datcnt/8) 
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                break 
            end 
        end 
        start = ii + 1; 
    else 
        fin = ii; 
    end 
end 

  
delay = 0:tau:(ndim-1)*tau; 

  
nxtbox = zeros(maxbox, ndim); 
where = zeros(maxbox, ndim); 
datptr = zeros(1,maxbox); 
nxtdat = zeros(1,datcnt); 

  
datmin = min(data); 
datmax = max(data); 

  
datmin = datmin - 0.01*(datmax - datmin); 
datmax = datmax + 0.01*(datmax - datmin); 
boxlen = (datmax - datmin)/ires; 

  
boxcnt = 1; 

  
for ii = 1:(datcnt-(ndim-1)*tau) 
    target = floor((data(ii+delay)-datmin)/boxlen); 
    runner = 1; 
    chaser = 0; 

     
    jj = 1; 
    while jj <= ndim 
        tmp = where(runner,jj)-target(jj); 
        if tmp < 0 
            chaser = runner; 
            runner = nxtbox(runner,jj); 
            if runner ~= 0 
                continue 
            end 
        end 
        if tmp ~= 0 
           boxcnt = boxcnt + 1; 

            
           if boxcnt == maxbox 
               error('Grid overflow, increase number of box count') 
           end 

            
           for kk = 1:ndim 
               where(boxcnt,kk) = where(chaser,kk); 
           end 
           where(boxcnt,jj) = target(jj); 
           nxtbox(chaser,jj) = boxcnt; 
           nxtbox(boxcnt,jj) = runner; 
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           runner = boxcnt; 
        end 
        jj = jj + 1; 
    end 
    nxtdat(ii) = datptr(runner); 
    datptr(runner) = ii; 
end 

  
used = 0; 
for ii = 1:boxcnt 
    if datptr(ii) ~= 0; 
        used = used + 1; 
    end 
end 
display(['Created: ', num2str(boxcnt)]); 
display(['Used: ', num2str(used)]); 

  
db.ndim = ndim; 
db.ires = ires; 
db.tau = tau; 
db.datcnt = datcnt; 
db.boxcnt = boxcnt; 
db.datmax = datmax; 
db.datmin = datmin; 
db.boxlen = boxlen; 

  
db.datptr = datptr(1:boxcnt); 
db.nxtbox = nxtbox(1:boxcnt, 1:ndim); 
db.where = where(1:boxcnt, 1:ndim); 
db.nxtdat = nxtdat(1:datcnt); 
db.data = data; 

 

fet.m 

function [out, SUM] = fet(db, dt, evolve, dismin, dismax, thmax) 
% Computes Lyapunov exponent of given data and parameters, generates 

output 
% textfile, exact replica of Fortran 77 version of fet 
% Taehyeun Park, The Cooper Union, EE'15 

  
out = []; 

  
ndim = db.ndim; 
ires = db.ires; 
tau = db.tau; 
datcnt = db.datcnt; 
datmin = db.datmin; 
boxlen = db.boxlen; 

  
datptr = db.datptr; 
nxtbox = db.nxtbox; 
where = db.where; 
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nxtdat = db.nxtdat; 
data = db.data; 

  
delay = 0:tau:(ndim-1)*tau; 
datuse = datcnt-(ndim-1)*tau-evolve; 

  
its = 0; 
SUM = 0; 
savmax = dismax; 

  
oldpnt = 1; 
newpnt = 1; 

  
fileID = fopen('fetout.txt', 'w'); 

  
goto50 = 1; 
while goto50 == 1; 
    goto50 = 0; 
    [bstpnt, bstdis, thbest] = search(0, ndim, ires, datmin, boxlen, 

nxtbox, where, ... 
        datptr, nxtdat, data, delay, oldpnt, newpnt, datuse, dismin, 

dismax,... 
        thmax, evolve); 

    
    while bstpnt == 0 
        dismax = dismax * 2; 
        [bstpnt, bstdis, thbest] = search(0, ndim, ires, datmin, 

boxlen, nxtbox, where, ... 
            datptr, nxtdat, data, delay, oldpnt, newpnt, datuse, 

dismin, dismax,... 
            thmax, evolve); 
    end 

     
    dismax = savmax; 
    newpnt = bstpnt; 
    disold = bstdis; 
    iang = -1; 

     
    goto60 = 1; 
    while goto60 == 1; 
        goto60 = 0; 

         
        oldpnt = oldpnt + evolve; 
        newpnt = newpnt + evolve; 

         
        if oldpnt >= datuse 
            return 
        end 

         
        if newpnt >= datuse 
            oldpnt = oldpnt - evolve; 
            goto50 = 1; 
            break 
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        end 

         
        p1 = data(oldpnt + delay); 
        p2 = data(newpnt + delay); 
        disnew = sqrt(sum((p2 - p1).^2)); 

         
        its = its + 1; 

  
        SUM = SUM + log(disnew/disold); 
        zlyap = SUM/(its*evolve*dt*log(2)); 
        out = [out; its*evolve, disold, disnew, zlyap, (oldpnt-evolve), 

(newpnt-evolve)]; 

         
        if iang == -1 
            fprintf(fileID, '%-d\t\t\t%-8.6f\t\t%-8.6f\t\t%-8.6f\n', 

out(end,1:4)'); 
        else 
            fprintf(fileID, '%-d\t\t\t%-8.6f\t\t%-8.6f\t\t%-8.6f\t\t%-

d\n', [out(end,1:4), iang]'); 
        end 

  
        if disnew <= dismax 
            disold = disnew; 
            iang = -1; 
            goto60 = 1; 
            continue 
        end 

  
        [bstpnt, bstdis, thbest] = search(1, ndim, ires, datmin, 

boxlen, nxtbox, where, ... 
            datptr, nxtdat, data, delay, oldpnt, newpnt, datuse, 

dismin, dismax,... 
            thmax, evolve); 

  
        if bstpnt ~= 0 
            newpnt = bstpnt; 
            disold = bstdis; 
            iang = floor(thbest); 
            goto60 = 1; 
            continue 
        else 
            goto50 = 1; 
            break; 
        end 
    end 
end 
fclose(fileID); 

 

 

 



119 

 

search.m 

function [bstpnt, bstdis, thbest] = search(iflag, ndim, ires, 

datmin,... 
    boxlen, nxtbox, where, datptr, nxtdat, data, delay, oldpnt, 

newpnt,... 
    datuse, dismin, dismax, thmax, evolve) 
% Searches for the most viable point for fet.m 
% Taehyeun Park, The Cooper Union, EE'15 

  
target = zeros(1,ndim); 
oldcrd = zeros(1,ndim); 
zewcrd = zeros(1,ndim); 

  
oldcrd(1:ndim) = data(oldpnt+delay); 
zewcrd(1:ndim) = data(newpnt+delay); 
igcrds = floor((oldcrd - datmin)./boxlen); 
oldist = sqrt(sum((oldcrd - zewcrd).^2)); 

  
irange = round(dismin/boxlen); 
if irange == 0; 
    irange = 1; 
end 

  
thbest = thmax; 
bstdis = dismax; 
bstpnt = 0; 

  
goto30 = 1; 
while goto30 == 1 
    goto30 = 0; 
    for icnt = 0:((2*irange+1)^ndim)-1 
        goto140 = 0; 
        icounter = icnt; 
        for ii = 1:ndim; 
            ipower = (2*irange+1)^(ndim-ii); 
            ioff = floor(icounter./ipower); 
            icounter = icounter - ioff*ipower; 
            target(ii) = igcrds(ii) - irange + ioff; 

  
            if target(ii) < 0 
                goto140 = 1; 
                break; 
            end 
            if target(ii) > ires-1 
                goto140 = 1; 
                break 
            end 
        end 

         
        if goto140 == 1; 
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            continue 
        end 

         
        if irange ~= 1 
            iskip = 1; 
            for ii = 1:ndim 
                if abs(round(target(ii) - igcrds(ii))) == irange 
                    iskip = 0; 
                end 
            end 
            if iskip == 1 
                continue 
            end 
        end 

         
        runner = 1; 
        for ii = 1:ndim 
            goto80 = 0; 
            goto70 = 1; 
            while goto70 == 1; 
                goto70 = 0; 
                if where(runner,ii) == target(ii) 
                    goto80 = 1; 
                    break 
                end 
                runner = nxtbox(runner, ii); 
                if runner ~= 0 
                    goto70 = 1; 
                end 
            end 

             
            if goto80 == 1 
                continue 
            end 
            goto140 = 1; 
            break 
        end 

         
        if goto140 == 1 
            continue 
        end 

         
        if runner == 0 
            continue 
        end 
        runner = datptr(runner); 
        if runner == 0 
            continue 
        end 
        goto90 = 1; 
        while goto90 == 1 
            goto90 = 0; 
            while 1; 
                if abs(round(runner - oldpnt)) < evolve 
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                    break 
                end 

                if abs(round(runner - datuse)) < (2*evolve) 
                    break 
                end 

                 
                bstcrd = data(runner + delay); 

                 
                abc1 = oldcrd(1:ndim) - bstcrd(1:ndim); 
                abc2 = oldcrd(1:ndim) - zewcrd(1:ndim); 
                tdist = sum(abc1.*abc1); 
                tdist = sqrt(tdist); 
                dot = sum(abc1.*abc2); 

  
                if tdist < dismin 
                    break 
                end 
                if tdist >= bstdis 
                    break 
                end 
                if tdist == 0 
                    break 
                end 
                goto120 = 0; 
                if iflag == 0 
                    goto120 = 1; 
                end 
                if goto120 == 0 
                    ctheta = min(abs(dot/(tdist*oldist)),1); 
                    theta = 57.3*acos(ctheta); 
                    if theta >= thbest 
                        break 
                    end 
                    thbest = theta; 
                end 
                bstdis = tdist; 
                bstpnt = runner; 
                break; 
            end 
            runner = nxtdat(runner); 

  
            if runner ~= 0 
                goto90 = 1; 
            end 
        end 
    end 
    irange = irange + 1; 
    if irange <= (0.5 + round((dismax/boxlen))) 
        goto30 = 1; 
        continue; 
    end 
    return 
end 
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makeplot.m 

function [] = makeplot(db, out, evolve, loc) 
% Plots 2D or 3D attractor evolution by evolution, 4th parameter is the 
% location of legend 
% Taehyeun Park, The Cooper Union, EE'15 

  
datcnt = db.datcnt; 
ndim = db.ndim; 
tau = db.tau; 
dataplot = []; 
freerun = 0; 

  
delay = 0:tau:(ndim-1)*tau; 
data = db.data; 

  
for ii = 1:(datcnt-(ndim-1)*tau) 
    dataplot = [dataplot; data(ii+delay)]; 
end 

  
figure, bar(out(:,1),out(:,3)), hold on; 
mle = max(dataplot(:)) - min(dataplot(:)); 
plot([0, out(end,1)], [mle, mle], 'r', 'LineWidth', 1.5), hold off; 
set(gca,'YTick', [0, mle]) 
axis([0, out(end,1), 0, 1.1*mle]) 
title('d_f of evolutions scaled to the maximum linear extent of the 

attractor') 

  
if ndim == 2 
    figure('Position', [100, 100, 800, 500]); 
    plot(dataplot(:,1), dataplot(:,2), '.', 'MarkerSize', 3), hold on; 
    display('To see the next evolution, press enter') 
    display('To clear the screen and then see the next evolution, type 

c and press enter') 
    display('To proceed without stopping, type r and press enter') 
    display('To terminate plot generating, type g and press enter') 

     
    for ii = 1:size(out,1) 
        if freerun == 0 
%             RESET = input('Next evolution?  ', 's'); 
            RESET = 'g'; 
            if strcmp(RESET, 'c') 
                display('Screen cleared') 
                hold off; 
                clf; 
                plot(dataplot(:,1), dataplot(:,2), '.', 'MarkerSize', 

3), hold on; 
            elseif strcmp(RESET, 'r') 
                display('Evolving without stopping...') 
                display('Press ctrl+c to terminate') 
                freerun = 1; 
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            elseif strcmp(RESET, 'g') 
                display('Plot generating stopped') 
                return; 
            else 
                if ii > 1 
                    delete(ann) 
                end 
            end 
        end 

         
        tmpold = out(ii,5); 
        oldpnt = tmpold + evolve; 
        tmpnew = out(ii,6); 
        newpnt = tmpnew + evolve; 

                 
        plot(data(tmpold:oldpnt), data((tmpold+tau):(oldpnt+tau)), 'r', 

'LineWidth', 1); 
        plot(data(tmpnew:newpnt), data((tmpnew+tau):(newpnt+tau)), 'g', 

'LineWidth', 1); 
        for aa = 0:evolve; 
            plot([data(tmpold+aa), data(tmpnew+aa)], 

[data(tmpold+aa+tau), data(tmpnew+aa+tau)], 'LineWidth', 1) 
        end 

  

         
        ann = legend(['Iteration: ', num2str(out(ii,1)), '/', 

num2str(out(end,1)), char(10)... 
                      'd_i:', num2str(out(ii,2)), char(10)... 
                      'd_f:', num2str(out(ii,3)), char(10)... 
                      'Current Estimate:' num2str(out(ii,4))], ... 
                      'location', loc); 
        if freerun == 1 
            drawnow 
        end 
    end 

     
elseif ndim == 3     
    figure('Position', [100, 100, 800, 500]); 
    plot3(dataplot(:,1), dataplot(:,2), dataplot(:,3), '.', 

'MarkerSize', 3), hold on; 
    display('To see the next evolution, press enter') 
    display('To clear the screen and then see the next evolution, type 

c and press enter') 
    display('To proceed without stopping, type r and press enter') 
    display('To terminate plot generating, type g and press enter') 

  
    for ii = 1:size(out,1) 
        if freerun == 0 
%             RESET = input('Next evolution?  ', 's'); 
            RESET = 'g'; 
            if strcmp(RESET, 'c') 
                display('Screen cleared') 
                hold off; 
                clf; 
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                plot3(dataplot(:,1), dataplot(:,2), dataplot(:,3), '.', 

'MarkerSize', 3), hold on; 
            elseif strcmp(RESET, 'r') 
                display('Evolving without stopping...') 
                display('Press ctrl+c to terminate') 
                freerun = 1; 
            elseif strcmp(RESET, 'g') 
                display('Plot generating stopped') 
                return; 
            else 
                if ii > 1 
                    delete(ann) 
                end 
            end 
        end 

         
        tmpold = out(ii,5); 
        oldpnt = tmpold + evolve; 
        tmpnew = out(ii,6); 
        newpnt = tmpnew + evolve; 

                 
        plot3(data(tmpold:oldpnt), data((tmpold+tau):(oldpnt+tau)), 

data((tmpold+(2*tau)):(oldpnt+(2*tau))), 'r', 'LineWidth', 1); 
        plot3(data(tmpnew:newpnt), data((tmpnew+tau):(newpnt+tau)), 

data((tmpnew+(2*tau)):(newpnt+(2*tau))), 'g', 'LineWidth', 1); 
        for aa = 0:evolve; 
            plot3([data(tmpold+aa), data(tmpnew+aa)], 

[data(tmpold+aa+tau), data(tmpnew+aa+tau)], [data(tmpold+aa+(2*tau)), 

data(tmpnew+aa+(2*tau))], 'LineWidth', 1) 
        end 

  

         
        ann = legend(['Iteration: ', num2str(out(ii,1)), '/', 

num2str(out(end,1)), char(10)... 
                      'd_i:', num2str(out(ii,2)), char(10)... 
                      'd_f:', num2str(out(ii,3)), char(10)... 
                      'Current Estimate:' num2str(out(ii,4))], ... 
                      'location', loc); 
        if freerun == 1 
            drawnow 
        end 
    end 
end 

 

Lyapunov_expEst.m 

function [LyaExp_b_sec,LyaExp_b_orb] = lyapunov_expEst(domFreq) 

  
close all; 
% Mean Orbital Period from PSD 
meanPeriod = 1/domFreq;  
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% Output data fetout.txt from lyapunov.m code 
bitsPerSec_Data = importdata('fetout.txt');  
% Estimate of lyapunov exponent for each increment 
bitsPerSec_Exp = bitsPerSec_Data(:,8);  

  
i = 1; 
ind = 1; 
while i <= length(bitsPerSec_Exp) 
    if isnan(bitsPerSec_Exp(i)) ~= 1 
        BPS(ind) = bitsPerSec_Exp(i); 
        ind = ind + 1; 
    end 
    i = i + 1; 
end 

  
BPS = BPS'; 
bitsPerOrbit = BPS.*meanPeriod; 
plot(bitsPerOrbit,'linewidth',2) 
hold on; plot([1 length(BPS)],[0 0],'-k') 
grid on; 
axis([0 length(BPS) -inf inf]) 

  
xlabel('Time \rightarrow') 
ylabel('Lyapunov Exponent (bits/orbit)') 
figureHandle = gcf; 
set(findall(figureHandle,'type','text'),'fontSize',18,'fontWeight','bol

d') 

  
LyaExp_b_sec = BPS(end); 
LyaExp_b_orb = bitsPerOrbit(end); 

  
end 

  

 

PSD.m 

data = importdata('60percSL_Icos005Tab_BC3(8).txt'); 

  
% Sampling frequency is 1/dt. dt is the time step increment 
Fs = 1/1e-5; 
% cutoff any transient response data 
t = data(502:end,1); 
x = data(502:end,2); 

  
N = length(x); 
xdft = fft(x); 
xdft = xdft(1:N/2+1); 
% xdft = xdft(1:round(N/2)); 
psdx = (1/(Fs*N)) * abs(xdft).^2; 
psdx(2:end-1) = 2*psdx(2:end-1); 
freq = 0:Fs/length(x):Fs/2; 

  
figure('position',[100 100 1400 875]) 
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plot(freq,10*log10(psdx),'LineWidth',2) 
set(gca,'FontSize',14) 
grid on 

  
xlabel('Frequency (Hz)') 
ylabel('Power/Frequency (dB/Hz)') 
axis([0 10000 -inf inf]) 
figureHandle = gcf; 
set(findall(figureHandle,'type','text'),'fontSize',18,'fontWeight',… 

'bold') 
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